ENGINE CONTROLS 1F – 311
DAEWOO V–121 BL4
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fail. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Due to moisture associated with exhaust systems, the
EGR valve may freeze and stick in cold weather at times.
After the vehicle is brought into a warm shop for repairs,
the valve warms and the problem disappears.
By watching the Actual EGR and desired EGR positions
on a cold vehicle with a scan tool, the fault can be easily
verified. Check the Freeze Frame data to determine if the
DTC set when the vehicle was cold by viewing the Engine
Coolant Temperature (ECT).
DTC P1403 – Exhaust Gas Recirculation Valve Failure
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Turn the ignition switch to with the engine OFF.
2. Install the scan tool.
3. Command the exhaust gas recirculation (EGR)
valve to the specified values.
Does the Actual EGR Position follow the desired
EGR position?25%, 50%
75%, 100%Go to Step 19Go to Step 3
31. Turn the ignition switch to ON.
2. Disconnect the EGR valve electrical connector.
3. With a test light connected to B+, probe the
ground circuit to the EGR valve.
Does the test light illuminate?–Go to Step 4Go to Step 5
41. Connect the test light to ground.
2. Probe the EGR control circuit at terminal 3 to
the EGR valve.
3. Command the EGR valve to the specified val-
ues using a scan tool.
After the command is raised, does the test light glow
brighter, flash or maintain a steady glow?25%, 50%
75%, 100%Go to Step 6Go to Step 7
5Repair the open or poor connection in the EGR
ground circuit.
Is the repair complete?–Go to Step 19–
6With a test light still connected to ground, probe the
signal circuit at terminal 3.
Does the test light illuminate?–Go to Step 8Go to Step 9
7With a test light still connected to ground, again
probe the signal circuit without commanding the
EGR valve with the scan tool.
Does the test light illuminate?–Go to Step 10Go to Step 11
8Check the signal circuit for a short to voltage and re-
pair as necessary.
Is a repair necessary?–Go to Step 19Go to Step 12
ENGINE CONTROLS 1F – 313
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1404
EXHAUST GAS RECIRCULATION CLOSED
Circuit Description
An Exhaust Gas Re–circulation (EGR) system is used to
lower oxides of nitrogen (NOx) emission levels caused by
high combustion temperatures. It accomplishes this by
feeding small amounts of exhaust gases back into the
combustion chamber. When the air/fuel mixture is diluted
with the exhaust gases, combustion temperatures are re-
duced.
A linear EGR valve is used on this system. The linear EGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum. The
valve controls exhaust flow going into the intake manifold
from the exhaust manifold through an orifice with a engine
control module(ECM) controlled pintle. The ECM controls
the pintle position using inputs from the Throttle Position
(TP) and the Manifold Absolute Pressure (MAP) sensor.
The ECM then commands the EGR valve to operate when
necessary by controlling an ignition signal through the
ECM. This can be monitored on a scan tool as the Desired
EGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EGR valve, a voltage signal representing the
EGR valve pintle position is sent to the ECM. This feed-back signal can also be monitored on a scan tool and is the
actual position of the EGR pintle. The actual EGR position
should always be near the commanded or Desired EGR
position.
This Diagnostic Trouble Code(DTC) will detect an open or
short circuit.
Conditions for Setting the DTC
S EGR circuit is a short to battery condition exist.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fail. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
1F – 314IENGINE CONTROLS
DAEWOO V–121 BL4
Diagnostic Aids
Due to moisture associated with exhaust systems, the
EGR valve may freeze and stick in cold weather at times.
After the vehicle is brought into a warm shop for repairs,
the valve warms and the problem disappears. By watchingthe Actual EGR and desired EGR positions on a cold ve-
hicle with a scan tool, the fault can be easily verified.
Check the Freeze Frame data to determine if the DTC set
when the vehicle was cold by viewing the Engine Coolant
Temperature (ECT).
DTC P1404 – Exhaust Gas Recirculation Closed
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Turn the ignition switch ON with the engine
OFF.
2. Install the scan tool.
3. Command the Exhaust Gas Recirculation
(EGR) valve to the specified values.
Does the Actual EGR Position follow the Desired
EGR Position?25%, 50%
75%, 100%Go to Step 13Go to Step 3
3Disconnect the EGR valve electrical connector.
Is the Actual EGR Position near the specified value?100%Go to Step 4Go to Step 5
4Check the signal circuit terminal 3 for a short to volt-
age and repair as necessary.
Is a repair necessary?–Go to Step 13Go to Step 6
5With a Digital Voltmeter (DVM) connected to ground,
probe the 5 volt reference circuit terminal 1 to the
EGR valve.
Does the DVM read near the specified valve?5VGo to Step 7Go to Step 8
61. Turn the ignition OFF.
2. Replace the Engine Control Module (ECM).
Is the repair complete?–Go to Step 13–
71. Connect a test light to ground.
2. Probe the EGR control circuit to the EGR
valve.
Does the test light illuminate?–Go to Step 9Go to Step 10
8Check the 5 volt reference circuit for a short to volt-
age and repair as necessary.
Is a repair necessary?–Go to Step 13Go to Step 6
9Check the control circuit for a short to voltage and re-
pair as necessary.
Is a repair necessary?–Go to Step 13Go to Step 6
10Check the EGR valve ground circuit for an open or
poor connection at the EGR valve electrical connec-
tor and repair as necessary.
Is a repair necessary?–Go to Step 13Go to Step 12
11Replace the EGR valve.
Is a action complete?–Go to Step 13–
12Check the EGR electrical connector for a poor con-
nection and repair as necessary.
Is a repair necessary?–Go to Step 13–
1F – 324IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1537
A/C COMPRESSOR RELAY HIGH VOLTAGE
Circuit Description
The A/C system uses an A/C refrigerant pressure sensor
mounted in the high pressure side of the A/C refrigerant
system to monitor A/C refrigerant pressure. The engine
control module (ECM) uses this information to turn ON the
engine coolant fans when the A/C refrigerant pressure is
high and to keep the compressor disengaged when A/C
refrigerant pressure is excessively high or low.
The air conditioning pressure (ACP) sensor operates like
other 3–wire sensors. The ECM applies a 5.0 volt refer-
ence and a sensor ground to the sensor. Changes in the
A/C refrigerant pressure will causes the ACP sensor input
to the ECM to vary. The ECM monitors the ACP sensor
signal circuit and can determine when the signal is out of
the possible range of the sensor. When the signal is out of
range for a prolonged period of time, the ECM will not allow
the A/C compressor clutch to engage. This is done to pro-
tect the compressor.
Conditions for Setting the DTC
S The air conditioning compressor relay circuit is a
short to battery condition exists.
Action Taken When the DTC SetsS The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will store conditions which were present
when the DTC was set as Failure Records data
only.
S This information will not be stored in the Freeze
Frame data.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Inspect harness connectors for backed–out terminals, im-
proper mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connection at
the ECM.
Inspect the wiring harness for damage. If the harness ap-
pears to be OK, observe the A/C pressure display on the
scan tool while moving the connectors and wiring har-
nesses related to the ACP sensor. A change in the A/C
pressure display will indicate the location of the fault.
1F – 326IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1538
A/C COMPRESSOR RELAY LOW VOLTAGE
Circuit Description
The A/C system uses an A/C refrigerant pressure sensor
mounted in the high pressure side of the A/C refrigerant
system to monitor A/C refrigerant pressure. The engine
control module (ECM) uses this information to turn ON the
engine coolant fans when the A/C refrigerant pressure is
high and to keep the compressor disengaged when A/C
refrigerant pressure is excessively high or low.
The air conditioning pressure (ACP) sensor operates like
other 3–wire sensors. The ECM applies a 5.0 volt refer-
ence and a sensor ground to the sensor. Changes in the
A/C refrigerant pressure will causes the ACP sensor input
to the ECM to vary. The ECM monitors the ACP sensor
signal circuit and can determine when the signal is out of
the possible range of the sensor. When the signal is out of
range for a prolonged period of time, the ECM will not allow
the A/C compressor clutch to engage. This is done to pro-
tect the compressor.
Conditions for Setting the DTC
S The air conditioning compressor relay circuit is a
short to ground an open condition exists.
Action Taken When the DTC SetsS The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will store conditions which were present
when the DTC was set as Failure Records data
only.
S This information will not be stored in the Freeze
Frame data.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Inspect harness connectors for backed–out terminals, im-
proper mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connection at
the ECM.
Inspect the wiring harness for damage. If the harness ap-
pears to be OK, observe the A/C pressure display on the
scan tool while moving the connectors and wiring har-
nesses related to the ACP sensor. A change in the A/C
pressure display will indicate the location of the fault.
ENGINE CONTROLS 1F – 347
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0106
MANIFOLD ABSOLUTE PRESSURE RATIONALITY
Circuit Description
The Engine Control Module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure which results
from engine load (intake manifold vacuum) and the rpm
changes, and it converts these into voltage outputs. The
ECM can detect if the MAP sensor is not responding to the
Throttle Position (TP) changes by comparing the actual
MAP change to a predicted MAP change based on the
amount of TP change that occurs. If the ECM does not see
the expected MAP change or more, DTC P0106 will set.
Conditions for Setting the DTC
S Altitude compensated MAP reading is higher than
high threshold or lower than low threshold table
based on rpm and TP signal.
S DTCs P0107, P0108, P0117, P0118, P0122,
P0123, P0201, P0202, P0203, P0204, P0300,
P0351, P0352, P0402, P0404, P1404, P0405,
P0406, P0506, P0507 are not set.
S Engine running.
S Valid Barometric Pressure (BARO) update.
S Torque Converter Clutch (TCC) steady (A/T).
S A/C steady state.
S No TP sensor fail conditions present.
S No MAP fail conditions present.
S Change in Idle Air Control (IAC) is less than 5%.
S Coolant temperature is greater than –10°C (14°F).
S Change in rpm is less than 200.
S Change in TP sensor is less than 3%.
S Change in Exhaust Gas Recirculation (EGR) value
is less than 6%.
S The rpm is between 1300 and 4500.
S All of the above are stabilized for 1.5 seconds.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive ignition cycle with a fail.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The ECM will substitute a fixed MAP value and use
TP sensor to control the fuel delivery. (The scan
tool will not show defaulted value.)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmospheric pressure and the signal
voltage will be high. This information is used by the ECM
as an indication of vehicle altitude. Comparison of this
reading with a known good vehicle with the same sensor
is a good way to check the accuracy of a suspect sensor.
Readings should be the same +0.4 volt.
The MAP sensor vacuum source should be thoroughly
checked for restrictions at the intake manifold.
Test Description
Numbers below refer to the step numbers on the Diagnos-
tic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the occurred. The information is then stored on the
scan tool for later reference.
2. A sensor that displays an ignition ON, engine OFF
BARO value that does not appear normal for the
altitude the vehicle is in should be considered to be
malfunctioning.
3. While starting the engine, the MAP sensor should
detect any changes in the manifold pressure. This
test is to determine if the sensor is stuck at a value.
4. A normal MAP sensor will react as quickly to the
throttle changes as they can be made. A sensor
should not appear to be lazy or catch up with the
throttle movements.
5. This step checks if the reason for no MAP change
was due to a faulty sensor or vacuum source to the
sensor.
6. The MAP sensor vacuum source should be thor-
oughly checked for restrictions. A drill bit can be
used to clean out any casting flash that may exist in
the vacuum port.
7. The MAP sensor vacuum source should be thor-
oughly checked for restrictions. A drill bit can be
used to clean out any casting flash that may exist in
the vacuum port.
9. The MAP Sensor System Performance diagnostic
may have to complete several tests before deter-
mining if the diagnostic has passed or failed the last
test. Operate the vehicle in the Conditions for Set-
ting the DTC several times to ensure that the diag-
nostic runs enough tests to pass or fail.
10. If no faults have been found at this point and no
additional DTCs were set, refer to ”Diagnostic
Aids”in this section for additional checks and infor-
mation.
ENGINE CONTROLS 1F – 349
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0107
MANIFOLD ABSOLUTE PRESSURE LOW VOLTAGE
Circuit Description
The Engine Control Module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure which results
from engine load (intake manifold vacuum) and the rpm
changes, and it converts these into voltage outputs. The
ECM sends a 5 volt reference voltage to the MAP sensor.
As the manifold pressure changes, the output of MAP sen-
sor also changes. By monitoring the Map sensor output
voltage, the ECM knows the manifold pressure. A low
pressure (low voltage) output voltage will be about 1.0 to
1.5 volts while the higher pressure (high voltage) output
voltage will be about 4.5 to 4.8 volts at Wide Open
Throttle(WOT). The MAP sensor is also used, under cer-
tain conditions to measure Barometric Pressure (BARO),
allowing the ECM to make adjustments for different alti-
tude.
Conditions for Setting the DTC
S MAP is less than 12 kPa (1.7 psi)
S No TP sensor fail conditions present.
S TP sensor is greater than 0% if the rpm is less than
1000.
S TP sensor is greater than 5% if the rpm is greater
than 1000.
S System voltage is between 11.0 and 11.5 volts.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The ECM will substitute a fixed MAP value and use
TP sensor to control the fuel delivery. (The scan
tool will not show defaulted value.)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmospheric pressure and the signal
voltage will be high. This information is used by the ECM
as an indication of vehicle altitude. Comparison of this
reading with a known good vehicle with the same sensor
is a good way to check the accuracy of a suspect sensor.
Readings should be the same 12 kPa.
If a DTC P0107 is intermittent, refer to ”Manifold Absolute
Pressure Check” in this section for further diagnosis.
Important : After repairs, use the scan tool FUEL TRIM
RESET function to reset long–term fuel trim to 128 (0%).
Test Description
Numbers below refer to the step numbers on the Diagnos-
tic Table.
1F – 350IENGINE CONTROLS
DAEWOO V–121 BL4
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. This step will determine if DTC P0107 is the result
of a hard failure or an intermittent condition.
3. Jumpering harness terminals 2 to 1 (signal circuit to
5 volts) will determine if the sensor is malfunction-
ing or if there is a problem with the ECM or wiring.6. The scan tool may not display 5 volts. The Impor-
tant thing is that the ECM recognizes the voltage as
more than 4 volts, indicating that the ECM and the
signal circuit are OK. A test light that illuminates
indicates a short to ground in the signal circuit.
7. A short to ground in the 5 volt reference circuit
could also set additional DTCs.
11. The replacement ECM must be programmed. Refer
to the latest Techline procedure for the ECM repro-
gramming.
DTC P0107 Manifold Absolute Pressure Low Voltage
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Was the check performed?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Install a scan tool to the Data Link Connector
(DLC).
2. Start the engine.
3. Read the Manifold Absolute Pressure (MAP).
Does the scan tool display a MAP below the speci-
fied value?12 kPaGo to Step 3Go to Step 4
31. Turn the ignition switch OFF.
2. Disconnect the MAP sensor electrical connec-
tor.
3. Jumper the MAP signal circuit at terminal 2 to
the 5 volt reference circuit at terminal 1.
4. Turn the ignition switch ON.
Does the MAP read more than the specified value?96 kPaGo to Step 5Go to Step 6
41. Turn the ignition switch ON with the engine
OFF, review the Freeze Frame data, and note
the parameters.
2. Operate the vehicle within the freeze frame
conditions and Conditions For Setting the DTC
as noted.
Does the scan tool display MAP below the specified
value?12 kPaGo to Step 3Go to
”Diagnostic
Aids”
5Inspect the MAP sensor harness electrical connec-
tor terminals for the following conditions:
S Poor connections.
S Proper contact tension.
S Poor terminal to wire connection.
Is a problem found?–Go to Step 8Go to Step 9
61. Turn the ignition switch OFF.
2. Remove the jumper wire.
3. Probe the MAP sensor signal circuit terminal 2
with a test light to B+.
4. Turn the ignition switch ON.
Does the scan tool read over the specified value?90 kPaGo to Step 7Go to Step 12
7Check the MAP sensor 5 volt reference circuit at ter-
minal 1 for an open or short to ground.
Is a problem found?–Go to Step 10Go to Step 11