
ENGINE CONTROLS 1F – 575
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
5Replace the sensor in the affected circuit, if a Diag-
nostic Trouble Code (DTC) was stored for this circuit
(except for the DTCs P0171 and P0172.
Is the repair complete?–System OK–
6Does an intermittent Malfunction Indicator Lamp
(MIL) or DTC occur?–Go toStep 7Go toStep 8
71. Check for a faulty relay, electronic control mod-
ule (ECM) driven solenoid, or switch.
2. Check for improper installation of electrical de-
vices, such as lights, two–way radios, electric
motors, etc.
3. Inspect the ignition control wires for proper
routing (away from ignition wires, ignition sys-
tem components, and the generator).
4. Check for a short–to–ground in the MIL circuit
or the DLC ”test” terminal.
5. Inspect the ECM ground connections.
6. Correct or repair the affected circuits as need-
ed.
Is the repair complete?–System OK–
81. Check for a loss of DTC memory.
2. 2. Disconnect the Throttle Position Sensor.
3. Run the engine at idle until the MIL comes on.
4. Turn the ignition OFF.
Is DTC P0122 stored in memory?–Go toStep 10Go toStep 9
9Replace the ECM.
Is the repair complete?–System OK–
10Does the vehicle stall while driving?–Go toStep 11Go toStep 12
11Monitor the Front Heated Oxygen Sensor (HO2S1)
and the injector base pulse width with the scan tool.
Does the scan tool display a steady low voltage
(about 0 mv) for the HO2S1 sensor with the control
module commanding an injector base pulse width of
the value specified?8 msGo toStep 9Go toStep 12
121. Check for an open diode across the A/C clutch
and for other open diodes.
2. Repair or replace any components as needed.
Is the repair complete?–System OK–

ENGINE CONTROLS 1F – 577
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
101. Check the fuel injector driver circuit.
2. Disconnect all of the fuel injector harness con-
nectors at the fuel injectors.
3. Connect an injector test light between the har-
ness terminals of each fuel injector connector.
4. Note the test light while cranking the engine.
Does the test light blink at all connectors?–Go toStep 13Go toStep 11
11Check the fuel injector driver wiring harness, the
connectors, and the connector terminals for the
proper connections.
Is the problem found?–Go toStep 12Go toStep 30
12Repair the wiring harness, the connector, or the con-
nector terminal as needed.
Is the repair complete?–System OK
13Measure the resistance of each fuel injector at 68°F
(20°C). The resistance will increase slightly at high-
er temperatures.
Is the fuel injector resistance within the value speci-
fied?11.6–12.4 ΩGo toStep 15Go toStep 14
14Replace any fuel injector with a resistance that is out
of specifications.
Is the repair complete?–System OK–
15Perform an injector balance test.
Is the problem found?–Go toStep 16Go toStep 17
16Replace any restricted or leaking fuel injectors as
needed.
Is the repair complete?–System OK–
171. Check for the proper ignition voltage output for
each cylinder with a spark tester.
2. Inspect the spark plugs for cracks, wear, im-
proper gap, burned electrodes, or heavy de-
posits.
3. Inspect the ignition wires for short conditions.
4. Inspect all of the ignition grounds for loose con-
nections.
5. Inspect the powertrain control module
(PCM)/engine control module (ECM) for the
proper operation.
Is the problem found?–Go toStep 18Go toStep 19
18Correct or replace any faulty ignition components.
Is the repair complete?–System OK–
19Does the engine misfire or cut out under load or at
idle?Go to
”Ignition Sys-
tem Check”Go toStep 20
20Does the engine start, but then immediately stall?–Go toStep 21Go toStep 23
211. Remove the Crankshaft Position (CKP) sensor.
2. Inspect for faulty connections and repair as
needed.
Is the problem found?–Go toStep 22Go toStep 25
22Repair the faulty connections as needed.
Is the repair complete?–System OK–

ENGINE CONTROLS 1F – 583
DAEWOO V–121 BL4
HESITATION, SAG, STUMBLE
Definition : Involves a momentary lack of response as the
accelerator is pushed down. This can occur at any vehicle
speed. It is usually the most severe when first trying to
make the vehicle move, as from a stop. Hesitation, sag,
or stumble may cause the engine to stall if severe enough.Important : Before diagnosing this condition, check ser-
vice bulletins for Programmable Read–Only Memory
(PROM) updates.
Step
ActionValue(s)YesNo
1Were the Important Preliminary Checks performed?–Go toStep 2Go to
”Important Pre-
liminary
Checks”
21. Check the fuel system pressure. If the pres-
sure is not within the value specified, service
the fuel system as needed.
2. Inspect the Throttle Position (TP) sensor for
binding or sticking. The TP sensor voltage
should increase at a steady rate as the throttle
is moved toward Wide Open Throttle (WOT).
Is the problem found?41–47 psi
(284–325 kPa)Go toStep 3Go toStep 4
3Repair or replace any components as needed.
Is the repair complete?–System OK–
41. Check the Manifold Absolute Pressure (MAP)
sensor response and accuracy.
2. Inspect the fuel for water contamination.
3. Check the Evaporative (EVAP) Emission canis-
ter purge system for proper operation.
Is the problem found?–Go toStep 5Go toStep 6
5Repair or replace any components as needed.
Is the repair complete?–System OK–
61. Disconnect all of the fuel injector harness con-
nectors.
2. Connect an injector test light between the har-
ness terminals of each fuel injector.
3. Note the test light while cranking the engine.
Does the test light blink on all connectors?–Go toStep 8Go toStep 7
71. Repair or replace the faulty fuel injector drive
harness, the connector, or the connector termi-
nal.
2. If the connections and the harnesses are good,
replace the engine control module (ECM) for
an internal open in the fuel injector driver cir-
cuit.
Is the repair complete?–System OK–
8Measure the resistance of each fuel injector. The re-
sistance will increase slightly at higher tempera-
tures.
Is the fuel injector resistance within the value speci-
fied?11.6–12.4 ΩGo toStep 10Go toStep 9
9Replace any of the fuel injectors with a resistance
that is out of specifications.
Is the repair complete?–System OK–
10Perform an injector balance test.
Is the problem found?–Go toStep 11Go toStep 12

ENGINE CONTROLS 1F – 585
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
71. Perform a cylinder compression test.
2. If the compression is low, repair the engine as
needed.
3. Inspect for proper valve timing, bent pushrods,
worn rocker arms, broken or weak valve
springs, and worn camshaft lobes.
4. Inspect the intake manifold and the exhaust
manifold passages for casting flash.
Is the problem found?–Go toStep 8Go toStep 9
8Repair or replace any components as needed.
Is the repair complete?–System OK–
91. Check the fuel system for a plugged in–line fuel
filter.
2. Check the fuel system for low fuel pressure. If
the fuel pressure is below the value specified,
service the fuel system as needed.
3. Inspect for contaminated fuel.
Is the problem found?41–47 psi
(284–325 kPa)Go toStep 10Go toStep 11
10Repair or replace any components as needed.
Is the repair complete?–System OK–
111. Disconnect all of the fuel injector harness con-
nectors at the fuel injectors.
2. Connect an injector test light to the harness
terminals of each fuel injector connector.
3. Note the test light while cranking the engine for
each fuel injector.
Does the test light blink for all of the fuel injectors?–Go toStep 13Go toStep 12
121. Repair or replace the faulty injector drive circuit
harness, the connector, or the connector termi-
nal.
2. If the harness, the connectors, and the termi-
nals are OK, replace the engine control module
(ECM).
Is the repair complete?–System OK–
13Measure the resistance of each fuel injector. The re-
sistance will increase slightly at higher tempera-
tures.
Is the injector resistance within the value specified?11.6–12.4 ΩGo toStep 15Go toStep 14
14Replace any fuel injectors with a resistance that is
out of specifications.
Is the repair complete?–System OK–
15Perform an injector balance test.
Is the problem found?–Go toStep 16Go toStep 17
16Replace any restricted or leaking fuel injectors.
Is the repair complete?–System OK–

ENGINE CONTROLS 1F – 589
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
111. Road test the vehicle at the speed of the com-
plaint.
2. Monitor the fuel trim reading using the scan
tool.
Is the fuel trim reading within the value specified?–20–25%Go toStep 14Go toStep 12
12Is the fuel trim reading below the value specified?–20%Go to
”Diagnostic
Aids for DTC
P0172”Go toStep 13
13Is the fuel trim reading above the value specified?25%Go to
”Diagnostic
Aids for DTC
P0171”–
141. Disconnect all of the fuel injector harness con-
nectors at the fuel injectors.
2. Connect an injector test light between the har-
ness terminals of each fuel injector connector.
3. Note the test light while cranking the engine.
Does the test light blink for all of the fuel injectors?–Go toStep 16Go toStep 15
151. Repair or replace the faulty injector drive circuit
harness, the connector, or the connector termi-
nals as needed.
2. If the harness, the connectors, and the termi-
nals are OK, replace the engine control module
(ECM).
Is the repair complete?–System OK–
16Measure the resistance of each of the fuel injectors.
The resistance will increase slightly at higher tem-
peratures.
Is the resistance within the value specified?11.6–12.4 ΩGo toStep 18Go toStep 17
17Replace any fuel injectors with a resistance that is
out of specifications.
Is the repair complete?–System OK–
18Perform an injector balance test.
Is the problem found?–Go toStep 19Go toStep 20
19Replace any leaking or restricted fuel injectors.
Is the repair complete?–System OK–
201. With the engine OFF, disconnect the fuel pres-
sure regulator vacuum hose.
2. Thoroughly inspect the fuel pressure regulator
vacuum port and the fuel pressure regulator
vacuum hose for the presence of fuel.
Is the problem found?–Go toStep 21 Go toStep 22
21Replace the fuel pressure regulator as needed.
Is the repair complete?–System OK–

ENGINE CONTROLS 1F – 625
DAEWOO V–121 BL4
EVAPORATIVE EMISSION CANISTER
The Evaporative (EVAP) Emission canister is an emission
control device containing activated charcoal granules.
The EVAP emission canister is used to store fuel vapors
from the fuel tank. Once certain conditions are met, the en-
gine control module (ECM) activates the EVAP canister
purge solenoid, allowing the fuel vapors to be drawn into
the engine cylinders and burned.
POSITIVE CRANKCASE
VENTILATION SYSTEM OPERATION
A Positive Crankcase Ventilation (PCV) system is used to
provide complete use of the crankcase vapors. Fresh air
from the air cleaner is supplied to the crankcase. The fresh
air is mixed with blowby gases which are then passed
through a vacuum hose into the intake manifold.
Periodically inspect the hoses and the clamps. Replace
any crankcase ventilation components as required.
A restricted or plugged PCV hose may cause the following
conditions:
S Rough idle
S Stalling or low idle speed
S Oil leaks
S Oil in the air cleaner
S Sludge in the engine
A leaking PCV hose may cause the following conditions:
S Rough idle
S Stalling
S High idle speed
ENGINE COOLANT TEMPERATURE
SENSOR
The Engine Coolant Temperature (ECT) sensor is a
thermistor (a resistor which changes value based on tem-
perature) mounted in the engine coolant stream. Low cool-
ant temperature produces a high resistance (100,000
ohms at –40 °F [–40 °C]) while high temperature causes
low resistance (70 ohms at 266 °F [130 °C]).
The engine control module (ECM) supplies 5 volts to the
ECT sensor through a resistor in the ECM and measures
the change in voltage. The voltage will be high when the
engine is cold, and low when the engine is hot. By measur-
ing the change in voltage, the ECM can determine the
coolant temperature. The engine coolant temperature af-
fects most of the systems that the ECM controls. A failure
in the ECT sensor circuit should set a diagnostic trouble
code P0117 or P0118. Remember, these diagnostic
trouble codes indicate a failure in the ECT sensor circuit,
so proper use of the chart will lead either to repairing a wir-
ing problem or to replacing the sensor to repair a problem
properly.
THROTTLE POSITION SENSOR
The Throttle Position (TP) sensor is a potentiometer con-
nected to the throttle shaft of the throttle body. The TP sen-
sor electrical circuit consists of a 5 volt supply line and a
ground line, both provided by the engine control module
(ECM). The ECM calculates the throttle position by moni-
toring the voltage on this signal line. The TP sensor output
changes as the accelerator pedal is moved, changing the
throttle valve angle. At a closed throttle position, the output
of the TP sensor is low, about 0.5 volt. As the throttle valve
opens, the output increases so that, at Wide Open Throttle
(WOT), the output voltage will be about 5 volts.
The ECM can determine fuel delivery based on throttle
valve angle (driver demand). A broken or loose TP sensor
can cause intermittent bursts of fuel from the injector and
an unstable idle, because the ECM thinks the throttle is
moving. A problem in any of the TP sensor circuits should
set a diagnostic trouble code (DTC) P0121 or P0122.
Once the DTC is set, the ECM will substitute a default val-
ue for the TP sensor and some vehicle performance will
return. A DTC P0121 will cause a high idle speed.
CATALYST MONITOR OXYGEN
SENSORS
Three–way catalytic converters are used to control emis-
sions of hydrocarbons (HC), carbon monoxide (CO), and
oxides of nitrogen (NOx). The catalyst within the convert-
ers promotes a chemical reaction. This reaction oxidizes
the HC and CO present in the exhaust gas and converts
them into harmless water vapor and carbon dioxide. The
catalyst also reduces NOx by converting it to nitrogen. The
engine control module (ECM) can monitor this process us-
ing the HO2S1 and HO2S2 sensor. These sensors pro-
duce an output signal which indicates the amount of oxy-
gen present in the exhaust gas entering and leaving the
three–way converter. This indicates the catalyst’s ability to
efficiently convert exhaust gasses. If the catalyst is operat-
ing efficiently, the HO2S1 sensor signals will be more ac-
tive than the signals produced by the HO2S2 sensor. The
catalyst monitor sensors operate the same way as the fuel
control sensors. The sensor’s main function is catalyst
monitoring, but they also have a limited role in fuel control.
If a sensor output indicates a voltage either above or below
the 450 mv bias voltage for an extended period of time, the
ECM will make a slight adjustment to fuel trim to ensure
that fuel delivery is correct for catalyst monitoring.
A problem with the HO2S1 sensor circuit will set DTC
P0131, P0132, P0133 or P0134 depending, on the special
condition. A problem with the HO2S2 sensor signal will set
DTC P0137, P0138, P0140 or P0141, depending on the
special condition.
A fault in the Rear Heated Oxygen Sensor (HO2S2) heat-
er element or its ignition feed or ground will result in lower
oxygen sensor response. This may cause incorrect cata-
lyst monitor diagnostic results.

ENGINE CONTROLS 1F – 627
DAEWOO V–121 BL4
A closed throttle on engine coast down produces a rela-
tively low MAP output. MAP is the opposite of vacuum.
When manifold pressure is high, vacuum is low. The MAP
sensor is also used to measure barometric pressure. This
is performed as part of MAP sensor calculations. With the
ignition ON and the engine not running, the engine control
module (ECM) will read the manifold pressure as baromet-
ric pressure and adjust the air/fuel ratio accordingly. This
compensation for altitude allows the system to maintaindriving performance while holding emissions low. The
barometric function will update periodically during steady
driving or under a wide open throttle condition. In the case
of a fault in the barometric portion of the MAP sensor, the
ECM will set to the default value.
A failure in the MAP sensor circuit sets a diagnostic trouble
code P0107 or P0108.
The following tables show the difference between absolute pressure and vacuum related to MAP sensor output, which
appears as the top row of both tables.
MAP
Volts4.94.43.83.32.72.21.71.10.60.30.3
kPa1009080706050403020100
in. Hg29.626.623.720.717.714.811.88.95.92.90
VACUUM
Volts4.94.43.83.32.72.21.71.10.60.30.3
kPa0102030405060708090100
in. Hg02.95.98.911.814.817..720.723.726.729.6
ENGINE CONTROL MODULE
The engine control module (ECM), located inside the pas-
senger kick–panel, is the control center of the fuel injection
system. It constantly looks at the information from various
sensors and controls the systems that affect the vehicle’s
performance. The ECM also performs the diagnostic func-
tions of the system. It can recognize operational problems,
alert the driver through the Malfunction Indicator Lamp
(MIL), and store diagnostic trouble code(s) which identify
problem areas to aid the technician in making repairs.
There are no serviceable parts in the ECM. The calibra-
tions are stored in the ECM in the Programmable Read–
Only Memory (PROM).
The ECM supplies either 5 or 12 volts to power the sensors
or switches. This is done through resistances in the ECM
which are so high in value that a test light will not come on
when connected to the circuit. In some cases, even an or-
dinary shop voltmeter will not give an accurate reading be-
cause its resistance is too low. You must use a digital volt-
meter with a 10 megohm input impedance to get accurate
voltage readings. The ECM controls output circuits such
as the fuel injectors, the idle air control valve, the A/C
clutch relay, etc., by controlling the ground circuit through
transistors or a device called a ”quad–driver.”
FUEL INJECTOR
The Multiport Fuel Injection (MFI) assembly is a solenoid–
operated device controlled by the engine control module
(ECM). It meters pressurized fuel to a single engine cylin-
der. The ECM energizes the fuel injector or the solenoid
to a normally closed ball or pintle valve. This allows fuel toflow into the top of the injector, past the ball or pintle valve,
and through a recessed flow director plate at the injector
outlet.
The director plate has six machined holes that control the
fuel flow, generating a conical spray pattern of finely atom-
ized fuel at the injector tip. Fuel from the tip is directed at
the intake valve, causing it to become further atomized
and vaporized before entering the combustion chamber.
A fuel injector which is stuck partially open will cause a loss
of fuel pressure after the engine is shut down. Also, an ex-
tended crank time will be noticed on some engines. Diesel-
ing can also occur because some fuel can be delivered to
the engine after the ignition is turned OFF.
KNOCK SENSOR
The knock sensor detects abnormal knocking in the en-
gine. The sensor is mounted in the engine block near the
cylinders. The sensor produces an AC output voltage
which increases with the severity of the knock. This signal
is sent to the engine control module (ECM). The ECM then
adjusts the ignition timing to reduce the spark knock.
ROUGH ROAD SENSOR
The engine control module (ECM) receives rough road in-
formation from the VR sensor. The ECM uses the rough
road information to enable or disable the misfire diagnos-
tic. The misfire diagnostic can be greatly affected by
crankshaft speed variations caused by driving on rough
road surfaces. The VR sensor generates rough road infor-
mation by producing a signal which is proportional to the
movement of a small metal bar inside the sensor.
If a fault occurs which causes the ECM to not receive
rough road information between 30 and 80 mph (50 and
132 km/h), DTC P1391 will set.

1F – 628IENGINE CONTROLS
DAEWOO V–121 BL4
STRATEGY – BASED DIAGNOSTICS
Strategy–Based Diagnostics
The strategy–based diagnostic is a uniform approach to
repair all Electrical/Electronic (E/E) systems. The diag-
nostic flow can always be used to resolve an E/E system
problem and is a starting point when repairs are neces-
sary. The following steps will instruct the technician on
how to proceed with a diagnosis:
S Verify the customer complaint. To verify the cus-
tomer complaint, the technician should know the
normal operation of the system.
S Perform preliminary checks as follows:
S Conduct a thorough visual inspection.
S Review the service history.
S Detect unusual sounds or odors.
S Gather Diagnostic Trouble Code (DTC) informa-
tion to achieve an effective repair.
S Check bulletins and other service information. This
includes videos, newsletters, etc.
S Refer to service information (manual) system
check(s).
S Refer to service diagnostics.
No Trouble Found
This condition exists when the vehicle is found to operate
normally. The condition described by the customer may be
normal. Verify the customer complaint against another ve-
hicle that is operating normally. The condition may be in-
termittent. Verify the complaint under the conditions de-
scribed by the customer before releasing the vehicle.
Re–examine the complaint.
When the complaint cannot be successfully found or iso-
lated, a re–evaluation is necessary. The complaint should
be re–verified and could be intermittent as defined in ”In-
termittents,” or could be normal.
After isolating the cause, the repairs should be made. Vali-
date for proper operation and verify that the symptom has
been corrected. This may involve road testing or other
methods to verify that the complaint has been resolved un-
der the following conditions:
S Conditions noted by the customer.
S If a DTC was diagnosed, verify a repair by duplicat-
ing conditions present when the DTC was set as
noted in the Failure Records or Freeze Frame data.
Verifying Vehicle Repair
Verification of the vehicle repair will be more comprehen-
sive for vehicles with On–Board Diagnostic (EOBD) sys-
tem diagnostics. Following a repair, the technician should
perform these steps:
Important : Follow the steps below when you verify re-
pairs on EOBD systems. Failure to follow these steps
could result in unnecessary repairs.S Review and record the Failure Records and the
Freeze Frame data for the DTC which has been
diagnosed (Freeze Fame data will only be stored
for an A or B type diagnostic and only if the MIL
has been requested).
S Clear the DTC(s).
S Operate the vehicle within conditions noted in the
Failure Records and Freeze Frame data.
S Monitor the DTC status information for the specific
DTC which has been diagnosed until the diagnostic
test associated with that DTC runs.
EOBD SERVICEABILITY ISSUES
Based on the knowledge gained from On–Board Diagnos-
tic (EOBD) experience in the 1994 and 1995 model years,
this list of non–vehicle faults that could affect the perfor-
mance of the EOBD system has been compiled. These
non–vehicle faults vary from environmental conditions to
the quality of fuel used. With the introduction of EOBD
diagnostics across the entire passenger car and light–duty
truck market in 1996, illumination of the MIL due to a non–
vehicle fault could lead to misdiagnosis of the vehicle, in-
creased warranty expense and customer dissatisfaction.
The following list of non–vehicle faults does not include ev-
ery possible fault and may not apply equally to all product
lines.
Fuel Quality
Fuel quality is not a new issue for the automotive industry,
but its potential for turning on the Malfunction Indicator
Lamp (MIL) with EOBD systems is new.
Fuel additives such as ”dry gas” and ”octane enhancers”
may affect the performance of the fuel. If this results in an
incomplete combustion or a partial burn, it will set DTC
P0300. The Reed Vapor Pressure of the fuel can also
create problems in the fuel system, especially during the
spring and fall months when severe ambient temperature
swings occur. A high Reed Vapor Pressure could show up
as a Fuel Trim DTC due to excessive canister loading.
High vapor pressures generated in the fuel tank can also
affect the Evaporative Emission diagnostic as well.
Using fuel with the wrong octane rating for your vehicle
may cause driveability problems. Many of the major fuel
companies advertise that using ”premium” gasoline will
improve the performance of your vehicle. Most premium
fuels use alcohol to increase the octane rating of the fuel.
Although alcohol–enhanced fuels may raise the octane
rating, the fuel’s ability to turn into vapor in cold tempera-
tures deteriorates. This may affect the starting ability and
cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine op-
eration, and eventually engine misfire.
Non–OEM Parts
All of the EOBD diagnostics have been calibrated to run
with Original Equipment Manufacturer (OEM) parts.
Something as simple as a high–performance exhaust sys-
tem that affects exhaust system back pressure could po-