DTC P1217 ENGINE OVER TEMPERATURE
EC-715
[QR (WITHOUT EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC
*1: Turn the ignition switch ON.
*2: Engine running at 3,000 rpm for 10 minutes.
*3: Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.
*4: After 60 minutes of cool down time.
For more information, refer to CO-5, "
OVERHEATING CAUSE ANALYSIS" .
Component InspectionEBS0111M
COOLING FAN RELAYS-1 AND -3
Check continuity between terminals 3 and 5, 6 and 7.
COOLING FAN MOTOR-1
1. Disconnect cooling fan motor harness connector.
2. Supply cooling fan motor terminals with battery voltage and
check operation.
COOLING FAN MOTOR-2
1. Disconnect cooling fan motor harness connector.
2. Supply cooling fan motor terminals with battery voltage and
check operation.
ON*39Coolant temperature
gaugeVisual Gauge less than 3/4
when driving—
Coolant overflow to
reservoir tankVisual No overflow during driving
and idlingSee CO-9 .
OFF*
410Coolant return from
reservoir tank to radia-
torVisual Should be initial level in
reservoir tankSee CO-9 .
OFF 11
Cylinder headStraight gauge feeler
gauge0.1 mm (0.004 in) Maxi-
mum distortion (warping)See EM-67 .
12
Cylinder block and pis-
tonsVisual No scuffing on cylinder
walls or pistonSee EM-82 . Engine Step Inspection item Equipment Standard Reference page
Conditions Continuity
12V direct current supply between ter-
minals 1 and 2Ye s
No current supply No
SEF745U
Terminals
(+) (-)
Cooling fan motor 1 2
PBIB1999E
SpeedTerminals
(+) (-)
Cooling fan motorLow 1 4
High 1., 2 3, 4
SEF734W
HO2S1 HEATER
EC-771
[QR (WITHOUT EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC
HO2S1 HEATERPFP:22690
DescriptionEBS01134
SYSTEM DESCRIPTION
The ECM performs ON/OFF duty control of the heated oxygen sensor 1 heater corresponding to the engine
speed and engine coolant temperature. The duty percent varies with engine coolant temperature when engine
is started.
OPERATION
CONSULT-II Reference Value in Data Monitor ModeEBS01135
Specification data are reference values.
Sensor Input Signal to ECM ECM function Actuator
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS)Engine speed
Heated oxygen sensor 1
heater controlHeated oxygen sensor 1
heater
Engine coolant temperature sensor Engine coolant temperature
Engine speed rpm Heated oxygen sensor 1 heater
Above 3,600 OFF
Below 3,600 ON
MONITOR ITEM CONDITION SPECIFICATION
HO2S1 HTR (B1)
Engine: After warming up
Engine speed: Below 3,600 rpmON
Engine speed: Above 3,600 rpm OFF
EC-776
[QR (WITHOUT EURO-OBD)]
HO2S2 HEATER
HO2S2 HEATERPFP:226A0
DescriptionEBS0113A
SYSTEM DESCRIPTION
The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed,
amount of intake air and engine coolant temperature.
OPERATION
CONSULT-II Reference Value in Data Monitor ModeEBS0113B
Specification data are reference values.
Sensor Input Signal to ECM ECM Function Actuator
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS)Engine speed
Heated oxygen sensor 2
heater controlHeated oxygen sensor 2 heater
Engine coolant temperature sensor Engine coolant temperature
Mass air flow sensor Amount of intake air
Engine speed rpm Heated oxygen sensor 2 heater
Above 3,600 OFF
Below 3,600 rpm after the following conditions are met.
Engine: After warming up
Keeping the engine speed between 3,500 and 4,000 rpm for 1
minute and at idle for 1 minute under no loadON
MONITOR ITEM CONDITION SPECIFICATION
HO2S2 HTR (B1)
Engine: After warming up
–Engine speed: Below 3,600 rpm after the following conditions are met.
–Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute
and at idle for 1 minute under no loadON
Engine speed: Above 3,600 rpm OFF
EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
EC-809
[QR (WITHOUT EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC
EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVEPFP:14920
DescriptionEBS01142
SYSTEM DESCRIPTION
*1: ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to the ECM through CAN communication line.
This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass pas-
sage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP
canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the
ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is
determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor
from the EVAP canister is regulated as the air flow changes.
COMPONENT DESCRIPTION
The EVAP canister purge volume control solenoid valve uses a ON/
OFF duty to control the flow rate of fuel vapor from the EVAP canis-
ter. The EVAP canister purge volume control solenoid valve is
moved by ON/OFF pulses from the ECM. The longer the ON pulse,
the greater the amount of fuel vapor that will flow through the valve.
CONSULT-II Reference Value in Data Monitor ModeEBS01143
Specification data are reference values.
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
1
EVAP canister
purge flow controlEVAP canister purge volume
control solenoid valve Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery
Battery voltage*1
Throttle position sensor Throttle position
Accelerator pedal position sensor Closed throttle position
Heated oxygen sensor 1Density of oxygen in exhaust gas
(Mixture ratio feedback signal)
Wheel sensor*
2Vehicle speed
SEF337U
MONITOR ITEM CONDITION SPECIFICATION
PURG VOL C/V
Engine: After warming up
Shift lever: N (A/T), Neutral (M/T)
Air conditioner switch: OFF
No loadIdle 0%
2,000 rpm 20 - 30%
EC-826
[QR (WITHOUT EURO-OBD)]
VIAS
VIASPFP:14956
DescriptionEBS011I0
SYSTEM DESCRIPTION
*: The ECM determines the start signal status by the signals of engine speed and battery voltage.
When the engine is running at low or medium speed, the power valve is fully closed. Under this condition, the
effective suction port length is equivalent to the total length of the intake manifold collector's suction port
including the intake valve. This long suction port provides increased air intake which results in improved suc-
tion efficiency and higher torque generation.
The surge tank and one-way valve are provided. When engine is running at high speed, the ECM sends the
signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power
valve actuator and therefore opens the power valve to two suction passages together in the collector.
Under this condition, the effective port length is equivalent to the length of the suction port provided indepen-
dently for each cylinder. This shortened port length results in enhanced engine output with reduced suction
resistance under high speeds.
COMPONENT DESCRIPTION
Power Valve
The power valve is installed in intake manifold collector and used to
control the suction passage of the variable induction air control sys-
tem. It is set in the fully closed or fully opened position by the power
valve actuator operated by the vacuum stored in the surge tank. The
vacuum in the surge tank is controlled by the VIAS control solenoid
valve.
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
VIAS control VIAS control solenoid valve Mass air flow sensor Amount of intake air
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Battery Battery voltage*
Engine coolant temperature sensor Engine coolant temperature
PBIB0843E
PBIB0946E
EC-872
[QR (WITHOUT EURO-OBD)]
SERVICE DATA AND SPECIFICATIONS (SDS)
SERVICE DATA AND SPECIFICATIONS (SDS)PFP:00030
Fuel PressureEBS01158
Idle Speed and Ignition TimingEBS01159
*: Under the following conditions:
Air conditioner switch: OFF
Electric load: OFF (Lights, heater fan & rear window defogger)
Steering wheel: Kept in straight-ahead position
Mass Air Flow SensorEBS0115B
*: Engine is warmed up to normal operating temperature and running under no-load.
Intake Air Temperature SensorEBS0115C
Engine Coolant Temperature SensorEBS0115D
Heated Oxygen Sensor 1 HeaterEBS0115E
Heated Oxygen sensor 2 HeaterEBS0115F
Crankshaft Position Sensor (POS)EBS0115G
Refer to EC-644, "Component Inspection" .
Fuel pressure at idle
Approximately 350 kPa (3.5bar, 3.57kg/cm2 , 51psi)
Target idle speedQR20DEM/T No load* (in Neutral position) 650±50 rpm
A/T No load* (in P or N position)
700±50 rpm
QR25DEM/T No load* (in Neutral position)
A/T No load* (in P or N position)
Air conditioner: ONQR20DEM/T In Neutral position
725 rpm or more
A/T In P or N position
QR25DEM/T In Neutral position 750 rpm or more
A/T In P or N position 700 rpm or more
Ignition timingQR20DEM/T In Neutral position
15°±5° BTDC A/T In P or N position
QR25DEM/T In Neutral position
A/T In P or N position
Supply voltageBattery voltage (11 - 14V)
Output voltage at idle0.7 - 1.1*V (QR20DE)
0.8 - 1.2*V (QR25DE)
Temperature °C (°F) Resistance kΩ
25 (77)1.94 - 2.06
80 (176)0.295 - 0.349
Temperature °C (°F) Resistance kΩ
20 (68)2.1 - 2.9
50 (122)0.68 - 1.00
90 (194)0.236 - 0.260
Resistance [at 25°C (77°F)] 3.3 - 4.0Ω
Resistance [at 25°C (77°F)] 5.0 - 7.0Ω
EC-882
[YD (WITH EURO-OBD)]
PREPARATION
PREPARATIONPFP:00002
Special Service ToolsEBS011T9
Commercial Service ToolsEBS011TA
Tool number
Tool nameDescription
EG17650301
Radiator cap tester
adapterAdapting radiator cap tester to radiator cap and
radiator filler neck
a: 28 (1.10) dia.
b: 31.4 (1.236) dia.
c: 41.3 (1.626) dia.
Unit: mm (in)
KV109E0010
Break-out boxMeasuring the ECM signals with a circuit tester
KV109E0080
Y-cable adapterMeasuring the ECM signals with a circuit tester
S-NT564
S-NT825
S-NT826
Tool name Description
Socket wrench Removing and installing engine coolant
temperature sensor
S-NT705
ENGINE CONTROL SYSTEM
EC-885
[YD (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC
System ChartEBS0116V
*1: The input signal is sent to the ECM through CAN communication line.
*2: The output signal is sent from the ECM through CAN communication line.
Fuel Injection Control SystemEBS0116W
SYSTEM DESCRIPTION
Three types of fuel injection control are provided to accommodate engine operating conditions; normal control,
idle control and start control. The ECM determines the appropriate fuel injection control. Under each control,
the amount of fuel injected is adjusted to improve engine performance.
Pulse signals are sent to fuel injectors according to the input signals to adjust the amount of fuel injected to
preset value.
START CONTROL
Input/Output Signal Chart
When the ECM receives a start signal from the ignition switch, the
ECM adapts the fuel injection system for the start control. The
amount of fuel injected at engine starting is a preset program value
in the ECM. The program is determined by the engine speed, engine
coolant temperature and fuel rail pressure.
For better startability under cool engine conditions, the lower the
coolant temperature becomes, the greater the amount of fuel
injected. The ECM ends the start control when the engine speed
reaches the specific value, and shifts the control to the normal or idle
control.
Input (Sensor) ECM Function Output (Actuator)
Accelerator pedal position sensor
Fuel rail pressure sensor
Fuel pump temperature sensor
Engine coolant temperature sensor
Mass air flow sensor
Intake air temperature sensor
Crankshaft position sensor
Camshaft position sensor
Turbocharger boost sensor
Vehicle speed sensor*1
ESP/TCS/ABS control unit*1
Ignition switch
Stop lamp switch
Air conditioner switch*1
Park/neutral position switch
Battery voltage
Fuel level switch
Power steering pressure switch Fuel injection control Fuel injector and Fuel pump
Fuel injection timing control Fuel injector and Fuel pump
Fuel cut control Fuel injector and Fuel pump
Glow control system
Glow relay and glow indicator lamp*
2
On board diagnostic system
Malfunction indicator (MI)*2
EGR volume control EGR volume control valve
Cooling fan control Cooling fan relay
Turbocharger boost controlTurbocharger boost control solenoid
valve
Fuel transport pump control Fuel transport pump relay
Air conditioning cut control Air conditioner relay
Sensor Input Signal to ECM ECM Function Actuator
Engine coolant temperature sensor Engine coolant temperature
Fuel injection
control (start
control)Fuel injector
Fuel pump Crankshaft position sensor Engine speed
Camshaft position sensor Piston position
Ignition switch Start signal
Fuel rail pressure sensor Fuel rail pressure
SEF648S