1B – 2 SOHC ENGINE MECANICAL
DAEWOO M-150 BL2
DESCRIPTION AND OPERATION
ENGINE TYPE
The engine is 4-cycle, water-cooled, in-line 3 cylinders
with displacement of 796cc (68.5×72.0mm) (2.70×
2.83 in.).
Engine model
(Specifications)F8C Type SOHC /
2 Valve (MPI)
Maximum power (kw/rpm)37.5 / 6,000
Maximum torque (Nm/rpm)68.6 / 4,600
Compression ratio9.3 : 1
D102B001
ENGINE LUBRICATION
The engine lubrication is of the wetsump method to draw
up the oil forced by the oil pump. The oil pump is of a
trochoid type, and mounted on crankshaft at crankshaft
pulley side (a). Oil is drawn up through oil pump pickup
tube (b) and passed through pump (c) to oil filter (d). The
filtered oil flows into two paths in engine block. In one
path (e), oil reaches crankshaft journal bearings. Oil
from crankshaft journal bearings is supplied to connect-
ing rod bearings by means of intersecting passages
drilled in crankshaft, and then injected from a small hole
provided on big end of connecting rod to lubricate piston
(f), rings, and cylinder wall. In another path (g), oil goes
up to cylinder head and lubricates rocker arm (i), valve
(j), camshaft (k), etc. through the oil hole provided on the
rocker arm shaft (h).
D102B002
CYLINDER HEAD AND VALVE TRAIN
The cylinder head is made of cast aluminum alloy for
better strength in hardness with lightweight, and cam-
shaft (k) and rocker arm shaft (h) arranged in-line sup-
port.
D102B003
The combustion chambers are formed into the manifold
combustion chambers with increased squish parts for
better combustion efficiency and its intake and exhaust
1B –6 SOHC ENGINE MECANICAL
DAEWOO M-150 BL2
ENGINE BLOCK
D21B0011
1 Oil Level Gauge Stick
2Piston
3 Connecting Rod
4 Engine Block
5 Oil Filter6 Flywheel
7 Crankshaft
8 Oil Pan
9 Oil Pump Strainer
10 Oil Pump Assembly
1B –10 SOHC ENGINE MECANICAL
DAEWOO M-150 BL2
ADJUSTMENT OF VALVE
CLEARANCE
Adjust the valve clearance in the following procedures:
1. Remove the air filter/resonator assembly and the
relevant parts installed on the cylinder head cover.
2. Remove the cylinder head cover hexagon bolts and
remove the cover.
3. Turn over the crankshaft to make No.1 cylinder
matched with the compression top dead center.
(When the camshaft sprocket notch (d) is aligned with
the timing belt rear cover triangle pointer (e) and the
crankshaft sprocket point (f) is aligned with the oil
pump housing point (g), the compression top dead
center is on the ignition sequence for No. 1 cylinder.)
D102B303
4. Check the valve clearance for No. 1 cylinder com-
pression top dead center.
Condition
Cylinder
No.
1
2
3
Compression topIntake
dead center of
No.1 cylinder
Exhaust
marks indicates the place where the valve clear-
ance can be checked and adjusted.
5. If the checking for the valve clearance of No.1 cylin-
der compression top dead center is over, position
No.1 cylinder on the exhaust top dead center as rotat-
ing the crankshaft in a 360–degree arc. (When the
camshaft sprocket point (h) is aligned with the timing
belt rear cover triangle pointer (e), the exhaust top
dead center is on the ignition sequence for No. 1 cyl-
inder.)
D102B304
6. Check the valve clearance for the No. 1 cylinder ex-
haust top dead center.
Condition
Cylinder
No.
1
2
3
Exhaust top deadIntake
center of No.1
cylinder
Exhaust
marks indicates the place where the valve clear-
ance can be checked and adjusted.
Check and adjust the valve clearance (i) using thick-
ness gauge (j).
D102B305
D102B306
ENGINE CONTROLS 1F–3
DAEWOO M-150 BL2
DTC P1628 Immobilizer No Successful
Communication 1F-270. . . . . . . . . . . . . . . . . . . . . . .
DTC P1629 Immovilizer Wrong Computation 1F-272
DTC P0656 Fuel Level Gauge Circuit Fault 1F-274.
DTC P1660 Malfunction Indicator Lamp (MIL)
High Voltage 1F-276. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1661 Malfunction Indicator Lamp (MIL)
Low Voltage 1F-278. . . . . . . . . . . . . . . . . . . . . . . . . .
Symptom Diagnosis 1F-280. . . . . . . . . . . . . . . . . . . . . .
Important Preliminary Checks 1F-280. . . . . . . . . . . . .
Intermittent 1F-281. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hard Start 1F-283. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Surges or Chuggles 1F-286. . . . . . . . . . . . . . . . . . . . .
Lack of Power, Sluggishness or Sponginess 1F-288
Detonation/Spark Knock 1F-290. . . . . . . . . . . . . . . . . .
Hesitation, Sag, Stumble 1F-292. . . . . . . . . . . . . . . . .
Cuts Out, Misses 1F-294. . . . . . . . . . . . . . . . . . . . . . . .
Poor Fuel Economy 1F-296. . . . . . . . . . . . . . . . . . . . . .
Rough, Unstable, or Incorrect Idle, Stalling 1F-297. .
Excessive Exhaust Emissions or Odors 1F-300. . . .
Dieseling, Run-on 1F-302. . . . . . . . . . . . . . . . . . . . . . .
Backfire 1F-303. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maintenance and Repair 1F-304. . . . . . . . . . . . . . . . . .
On-Vehicle Service 1F–304 . . . . . . . . . . . . . . . . . . . . . . .
Fuel Pump 1F–304 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fuel Pressure Regulator 1F-305. . . . . . . . . . . . . . . . .
Fuel Filter 1F-306. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fuel Tank 1F-307. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fuel Rail and Injectors 1F-308. . . . . . . . . . . . . . . . . . .
Evaporator Emission Canister 1F-309. . . . . . . . . . . . . Evaporator Emission Canister Purge
Solenoid 1F-310. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Manifold Absolute Pressure (MAP) Sensor 1F-310. .
Throttle Body 1F-311. . . . . . . . . . . . . . . . . . . . . . . . . . .
Engine Coolant Temperature (ECT) Sensor 1F-312.
Intake Air Temperature (ECT) Sensor 1F-313. . . . . .
Oxygen Sensor (O2S 1) 1F-314. . . . . . . . . . . . . . . . . .
Heated Oxygen Sensor (HO2S 2) 1F-314. . . . . . . . .
Electric Exhaust Gas Recirculation (EEGR)
Valve 1F-315. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Knock Sensor 1F-315. . . . . . . . . . . . . . . . . . . . . . . . . . .
Electronic Ignition (EI) System Ignition Coil 1F-316.
Crankshaft Position (CKP) Sensor 1F-316. . . . . . . .
Camshaft Position (CMP) Sensor 1F-317. . . . . . . . . .
Engine Control Module (ECM) 1F-317. . . . . . . . . . . . .
Specifications 1F-319. . . . . . . . . . . . . . . . . . . . . . . . . . .
Fastener Tightening Specification 1F-319. . . . . . . . . .
Special Tools 1F-319. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Special Tools Table 1F-319. . . . . . . . . . . . . . . . . . . . . .
Schematic and Routing Diagrams 1F-320. . . . . . . . .
ECM Wiring Diagram
(Sirius D3 – 1 of 5) 1F-320. . . . . . . . . . . . . . . . . . . .
ECM Wiring Diagram
(Sirius D3 – 2 of 5) 1F-321. . . . . . . . . . . . . . . . . . . .
ECM Wiring Diagram
(Sirius D3 – 3 of 5) 1F-322. . . . . . . . . . . . . . . . . . . .
ECM Wiring Diagram
(Sirius D3 – 4 of 5) 1F-323. . . . . . . . . . . . . . . . . . . .
ECM Wiring Diagram
(Sirius D3 – 5 of 5) 1F-324. . . . . . . . . . . . . . . . . . . .
1F–10 ENGINE CONTROLS
DAEWOO M-150 BL2
fuels use alcohol to increase the octane rating of the
fuel. Although alcohol-enhanced fuels may raise the oc-
tane rating, the fuel’s ability to turn into vapor in cold
temperatures deteriorates. This may affect the starting
ability and cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine
operation, and eventually engine misfire.
Non-OEM Parts
The EOBD system has been calibrated to run with Origi-
nal Equipment Manufacturer (OEM) parts. Something
as simple as a high performance-exhaust system that
affects exhaust system back pressure could potentially
interfere with the operation of the Electric Exhaust Gas
Recirculation (EEGR) valve and thereby turn on the
MIL. Small leaks in the exhaust system near the heated
oxygen sensor (HO2S) can also cause the MIL to turn
on.
Aftermarket electronics, such as cellular phones, ster-
eos, and anti-theft devices, may radiate Electromagnet-
ic Interference (EMI) into the control system if they are
improperly installed. This may cause a false sensor
reading and turn on the MIL.
Environment
Temporary environmental conditions, such as localized
flooding, will have an effect on the vehicle ignition sys-
tem. If the ignition system is rain-soaked, it can tempo-
rarily cause engine misfire and turn on the MIL.
Vehicle Marshaling
The transportation of new vehicles from the assembly
plant to the dealership can involve as many as 60 key
cycles within 2 to 3 miles of driving. This type of opera-
tion contributes to the fuel fouling of the spark plugs and
will turn on the MIL with a set DTC P0300.
Poor Vehicle Maintenance
The sensitivity of the EOBD will cause the MIL to turn on
if the vehicle is not maintained properly. Restricted air fil-
ters, fuel filters, and crankcase deposits due to lack of oil
changes or improper oil viscosity can trigger actual ve-
hicle faults that were not previously monitored prior to
EOBD. Poor vehicle maintenance can not be classified
as a “non-vehicle fault,” but with the sensitivity of the
EOBD, vehicle maintenance schedules must be more
closely followed.
Severe Vibration
The Misfire diagnostic measures small changes in the
rotational speed of the crankshaft. Severe driveline
vibrations in the vehicle, such as caused by an exces-
sive amount of mud on the wheels, can have the same
effect on crankshaft speed as misfire and, therefore,
may set DTC P0300.
Related System Faults
Many of the EOBD system diagnostics will not run if the
Engine Control Module (ECM) detects a fault on a re-
lated system or component. One example would be thatif the ECM detected a Misfire fault, the diagnostics on
the catalytic converter would be suspended until the
Misfire fault was repaired. If the Misfire fault is severe
enough, the catalytic converter can be damaged due to
overheating and will never set a Catalyst DTC until the
Misfire fault is repaired and the Catalyst diagnostic is al-
lowed to run to completion. If this happens, the custom-
er may have to make two trips to the dealership in order
to repair the vehicle.
SERIAL DATA COMMUNICATIONS
Keyword 2000 Serial Data
Communications
Government regulations require that all vehicle
manufacturers establish a common communication sys-
tem. This vehicle utilizes the “Keyword 2000” commu-
nication system. Each bit of information can have one of
two lengths: long or short. This allows vehicle wiring to
be reduced by transmitting and receiving multiple sig-
nals over a single wire. The messages carried on Key-
word 2000 data streams are also prioritized. If two
messages attempt to establish communications on the
data line at the same time, only the message with higher
priority will continue. The device with the lower priority
message must wait. The most significant result of this
regulation is that it provides scan tool manufacturers
with the capability to access data from any make or
model vehicle that is sold.
The data displayed on the other scan tool will appear the
same, with some exceptions. Some scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual val-
ue. On this vehicle, the scan tool displays the actual val-
ues for vehicle parameters. It will not be necessary to
perform any conversions from coded values to actual
values.
EURO ON-BOARD DIAGNOSTIC
(EOBD)
Euro On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic executive.
When a diagnostic test reports a pass result, the diag-
nostic executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
The diagnostic test has passed during the current
ignition cycle.
The fault identified by the diagnostic test is not cur-
rently active.
When a diagnostic test reports a fail result, the diagnos-
tic executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
ENGINE CONTROLS 1F–27
DAEWOO M-150 BL2
Engine Cranks But Will Not Run (Cont’d)
StepActionValue(s)YesNo
21
1. Check for any damages or poor connection in
ignition wires and repair as needed.
2. Connect the Ei system ignition coil connector and
ECM connector.
3. Check for the presence of spark from all of the
ignition wires.
Is the spark present from all of the ignition wires?
–
Go to Step 2Go to Step 22
22Replace ECM
Is the repair complete?–Go to Step 2–
23
1. Turn the ignition OFF.
2. Connect a fuel pressure gauge.
3. Crank the engine.
Is any fuel pressure present?
–
Go to Step 26Go to Step 24
24
1. Turn the ignition OFF.
2. Disconnect the electrical connector at the fuel
pump.
3. Connect a test light between the fuel pump
terminals 2 and 3.
4. Turn the ignition ON.
5. With the ignition ON, the test light should light for
the time specified.
Is the test light on?
2 sec.Go to Step 25Go to Step 32
25Replace the fuel pump.
Is the repair complete?–Go to Step 2–
26
Is the fuel pressure within the value specified?
380 kPa
(55 psi)
Go to Step 27Go to Step 29
27Check the fuel for contamination.
Is the fuel contaminated?–Go to Step 28Go to Step 41
28
1. Remove the contaminated fuel from the fuel tank.
2. Clean the fuel tank as needed.
Is the repair complete?
–
Go to Step 2
–
29
1. Check the fuel filter for restriction.
2. Inspect the fuel lines for kinks and restrictions.
3. Repair or replace as needed.
4. Measure the fuel pressure.
Is the fuel pressure within the value specified?
380 kPa
(55 psi)
Go to Step 2Go to Step 30
30
1. Disconnect vacuum line from the fuel pressure
regulator.
2. Inspect the vacuum line for the presence of fuel.
3. Inspect the fuel pressure regulator vacuum port
for the presence of fuel.
Is any fuel present?
–
Go to Step 31Go to Step 32
31Replace the fuel pressure regulator.
Is the repair complete?–Go to Step 2–
32
1. Remove the fuel pump assembly from the fuel
tank.
2. Inspect the fuel pump sender and the fuel
coupling hoses for a restriction.
3. Inspect the in-tank fuel filter for restriction.
Is the problem found?
–
Go to Step 33Go to Step 25
7B–14 MANUAL CONTROL HEATING, VENTILATION, AND AIR CONDITIONING SYSTEM
DAEWOO M-150 BL2
MAINTAINING CHEMICAL STABILITY
IN THE REFRIGERATION SYSTEM
The efficient operation and life of the air conditioning
system is dependent upon the chemical stability of the
refrigeration system. When foreign materials, such as
dirt, air, or moisture, contaminate the refrigeration sys-
tem, they will change the stability of the refrigerant and
the PAG compressor oil. They will also affect the pres-
sure-temperature relationship, reduce efficient opera-
tion, and can possibly cause interior corrosion and
abnormal wear of moving parts.
Observe the following practices to ensure chemical sta-
bility in the system:
Wipe away dirt or oil at and near any connection be-
fore opening that connection. This will reduce the
chance of dirt entering the system.
Cap, plug, or tape both sides of a connection as soon
as possible after opening the connection. This will
prevent the entry of dirt, foreign material, and mois-
ture.
Keep all tools clean and dry, including the manifold
gauge set and all replacement parts.
Use a clean and dry transfer device and container to
add PAG refrigerant oil. This will ensure that the oil
remains as moisture-free as possible. Refer to “Dis-
charging, Adding Oil, Evacuating and Charging Pro-
cedures for A/C System” in this section.
Have everything you need ready to allow you to per-
form all operations quickly when opening an A/C sys-
tem. Do not leave the A/C system open any longer
than necessary.
Evacuate and recharge any A/C system that has
been opened. Refer to “Discharging, Adding Oil, Eva-
cuating and Charging Procedures for A/C System” in
this section for the instructions to perform this proce-
dure properly.
All service parts are dehydrated and sealed before ship-
ping. They should remain sealed until just before making
connections. All the parts should be at room tempera-
ture before uncapping. This prevents condensation of
moisture from the air from entering the system. Reseal
all parts as soon as possible if the caps have been re-
moved but the connections cannot be made promptly.
DISCHARGING, ADDING OIL,
EVACUATING, AND CHARGING
PROCEDURES FOR A/C SYSTEMS
Caution: Use only refillable refrigerant tanks that
are authorized for the charging station being used.
The use of other tanks may cause personal injury or
void the warranty. Refer to the manufacturer’s in-
structions for the charging station.Caution: To avoid personal injury, always wear
goggles and gloves when performing work that in-
volves opening the refrigeration system.
A charging station discharges, evacuates, and re-
charges an air conditioning system with one hook-up.
Filtering during the recovery cycle together with filtering
during the evacuation cycle ensures a supply of clean,
dry refrigerant for A/C system charging.
Notice:
Never use the R-134a charging station on a system
charged with R-12. The refrigerants and the oils are
not compatible and must never be mixed in even the
smallest amount. Mixing refrigerant residue will dam-
age the equipment.
Never use adapters which convert from one size fit-
ting to another. This will allow contamination which
may cause system failure.
Charging Station Setup and Maintenance
Refer to the manufacturer’s instructions for all initial set-
up procedures and all maintenance procedures. There
are many charging stations available. All perform the
various tasks required to discharge the system and re-
cover refrigerant, evacuate the system, add a measured
amount of oil, and recharge an air conditioning system
with a measured amount of refrigerant.
Control Panel Functions
A charging station will have controls and indicators to al-
low the operator to control and monitor the operation in
progress. Refer to the manufacturer’s instructions for
details. These can be expected to include:
1. Main Power Switch: The main power switch supplies
electrical power to the control panel.
2. Display: The display shows the time programmed for
vacuum and the weight of the refrigerant pro-
grammed for recharging. Refer to the manufacturer’s
instructions for detailed programming information.
3. Low Side Manifold Gauge: This gauge shows the
system’s low side pressure.
4. High Side Manifold Gauge: This gauge shows the
system’s high side pressure.
5. Controls: This will contain the controls that control
various operating functions.
6. Low Side Valve: This valve connects the low side of
the A/C system to the unit.
7. Moisture Indicator: This indicator shows if the refrig-
erant is wet or dry.
8. High Side Valve: This valve connects the high side of
the A/C system to the unit.