
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) Remove door trim panel (Refer to 23 - BODY/
DOOR - FRONT/TRIM PANEL - REMOVAL).
(3) Disconnect wire harness connector from switch
(Fig. 4).(4) Remove switch from door trim panel.INSTALLATION
(1) Install switch to door trim panel.
(2) Connect wire harness connector to switch.
(3) Install door trim panel (Refer to 23 - BODY/
DOOR - FRONT/TRIM PANEL - INSTALLATION).
(4) Connect battery negative cable.
SIDEVIEW MIRROR
REMOVAL
(1) For removal procedures, (Refer to 23 - BODY/
EXTERIOR/SIDE VIEW MIRROR - REMOVAL).
Fig. 4 DOOR LOCK/MIRROR SWITCH
1 - DOOR TRIM PANEL
2 - DOOR LOCK SWITCH
3 - POWER MIRROR SWITCH
KJPOWER MIRRORS 8N - 13
POWER MIRROR SWITCH (Continued)

POWER WINDOWS
TABLE OF CONTENTS
page page
POWER WINDOWS
DESCRIPTION.........................21
OPERATION...........................21
DIAGNOSIS AND TESTING - POWER
WINDOWS...........................21
WINDOW MOTOR
REMOVAL.............................22WINDOW SWITCH
DIAGNOSIS AND TESTING - WINDOW
SWITCH............................22
REMOVAL.............................23
INSTALLATION.........................23
POWER WINDOWS
DESCRIPTION
The power window system allows each of the door
windows to be raised and lowered electrically by
actuating a switch on the center console. A master
switch on the front of the center console allows the
driver to raise or lower each of the passenger door
windows and to lock out the individual switches on
the rear of the center console from operation. The
power window system receives battery feed through
fuse 13 in the Power Distribution Center (PDC), only
when the ignition switch is in the RUN or ACCES-
SORY position.
OPERATION
WINDOW SWITCH
The power window switches control the battery
and ground feeds to the power window motors. Both
of the rear door power window switches receive their
battery and ground feeds through the circuitry of the
front window switch. When the power window lock-
out switch is in the Lock position, the battery feed
for the rear door window switches is interrupted.
WINDOW MOTOR
Front door window lift motors use permanent type
magnets. The B+ and ground applied at the motor
terminal pins will cause the motor to rotate in one
direction. Reversing current through the motor ter-
minals will cause the motor to rotate in the opposite
direction.
Refer to the appropriate wiring information. The
wiring information includes wiring diagrams, proper
wire and connector repair procedures, details of wire
harness routing and retention, connector pin-out
information and location views for the various wire
harness connectors, splices and grounds.
DIAGNOSIS AND TESTING - POWER
WINDOWS
WIRING VOLTAGE TEST
The following wiring test determines whether or
not voltage is continuous through the body harness
to the front switch.
(1) Remove the power window switch and bezel
(Refer to 8 - ELECTRICAL/POWER WINDOWS/
POWER WINDOW SWITCH - REMOVAL).
(2) Disconnect wire connector from back of power
window switch.
(3) Switch ignition to the ON position.
(4) Connect the clip end of a 12 volt test light to
Pin 14 of the window switch harness connector.
Touch the test light probe to Pin 10.
²If the test light illuminates, the wiring circuit
between the battery and switch is OK.
²If the lamp does not illuminate, first check fuse
13 in the Power Distribution Center (PDC). If fuse 13
is OK, then check for a broken wire.
Refer to the appropriate wiring information. The
wiring information includes wiring diagrams, proper
wire and connector repair procedures, details of wire
harness routing and retention, connector pin-out
information and location views for the various wire
harness connectors, splices and grounds.
POWER WINDOW MOTOR TEST
If the power window motor is receiving proper cur-
rent and ground and does not operate, proceed with
motor test. Refer to the appropriate wiring informa-
tion. The wiring information includes wiring dia-
grams, proper wire and connector repair procedures,
details of wire harness routing and retention, connec-
tor pin-out information and location views for the
various wire harness connectors, splices and grounds.
(1) Remove front door trim panel as necessary to
gain access to power window motor wire connector
KJPOWER WINDOWS 8N - 21

(Refer to 23 - BODY/DOOR - FRONT/TRIM PANEL -
REMOVAL).
(2) Disconnect power window motor wire connector
from door harness.
(3) Using two jumper wires, connect one to a bat-
tery (+) source and the other to a good ground (-).
(4) Connect the Negative (-) jumper probe to one of
the motor connector terminals.
(5) Momentarily touch the Positive (+) jumper
probe to the other motor connector terminal.
When positive probe is connected the motor should
rotate in one direction to either move window up or
down. If window is all the way up or down the motor
will grunt and the inner door panel will flex when
actuated in that one direction.
(6) Reverse jumper probes at the motor connector
terminals and window should now move in opposite
direction. If window does not move or grunt, replace
the motor.
If window moved completely up or down, reverse
the jumper probes and cycle window to the opposite
position to verify full operation.
If motor grunts and does not move, verify that reg-
ulator is not binding.
WINDOW MOTOR
REMOVAL
The window motor is incorporated into the window
regulator assembly. If the window motor requires
replacement, the window regulator must be replaced.
(Refer to 23 - BODY/DOOR - FRONT/WINDOW
REGULATOR - REMOVAL) or (Refer to 23 - BODY/
DOORS - REAR/WINDOW REGULATOR - REMOV-
AL).
WINDOW SWITCH
DIAGNOSIS AND TESTING - WINDOW SWITCH
(1) Remove the switch to be tested (Refer to 8 -
ELECTRICAL/POWER WINDOWS/POWER WIN-
DOW SWITCH - REMOVAL).
(2) Using an ohmmeter, Test front switch for con-
tinuity (Fig. 1).
POWER WINDOW FRONT SWITCH TEST
SWITCH POSITION CONTINUITY BETWEEN
OFF 14 AND 4
14 AND 5
14 AND 6
14 AND 7
14 AND 9
14 AND 11
14 AND 12
14 AND 13
LEFT FRONT UP 10 AND 11
LEFT FRONT DOWN 10 AND 9
RIGHT FRONT UP 10 AND 12
RIGHT FRONT DOWN 10 AND 13
LEFT REAR UP 10 AND 5
LEFT REAR DOWN 10 AND 4
RIGHT REAR UP 10 AND 7
RIGHT REAR DOWN 10 AND 6
LOCKOUT (LOCKED) NO CONTINUITY
BETWEEN 10 AND 2
LOCKOUT (UNLOCKED) 10 AND 2
(3) If the proper results are not obtained, replace
the front window switch.
(4) Test rear switch for continuity (Fig. 2).
Fig. 1 FRONT WINDOW SWITCH
Fig. 2 REAR WINDOW SWITCH
8N - 22 POWER WINDOWSKJ
POWER WINDOWS (Continued)

The hybrid-type inflator assembly includes a small
canister of highly compressed gas. When the ACM
sends the proper electrical signal to the airbag infla-
tor, the initiator converts the electrical energy into
chemical energy. This chemical energy opens up a
burst disk to allow the inert gas to flow into the air-
bag cushion. The inflator is sealed to the airbag
cushion so that all of the released inert gas is
directed into the airbag cushion, causing the cushion
to inflate. As the cushion inflates, the passenger air-
bag door will split at predetermined tear seam lines
on the inside surface of the door and the door will
pivot downwards out of the way. Following a passen-
ger airbag deployment, the airbag cushion quickly
deflates by venting the inert gas through vent holes
within the fabric used to construct the sides of the
airbag cushion.
Typically, both initiators are used during an airbag
deployment event. However, it is possible for only one
initiator to be used during a deployment due to an
airbag system fault; therefore, it is necessary to
always confirm that both initiators have been used in
order to avoid the improper disposal of potentially
live pyrotechnic materials. (Refer to 8 - ELECTRI-
CAL/RESTRAINTS - STANDARD PROCEDURE -
SERVICE AFTER A SUPPLEMENTAL RESTRAINT
DEPLOYMENT).
REMOVAL
The following procedure is for replacement of a
faulty or damaged passenger airbag. If the passenger
airbag has been deployed, review the recommended
procedures for service after a supplemental restraint
deployment before removing the airbag from the
vehicle. (Refer to 8 - ELECTRICAL/RESTRAINTS -
STANDARD PROCEDURE - SERVICE AFTER A
SUPPLEMENTAL RESTRAINT DEPLOYMENT).
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.WARNING: WHEN REMOVING A DEPLOYED AIR-
BAG, RUBBER GLOVES, EYE PROTECTION, AND A
LONG-SLEEVED SHIRT SHOULD BE WORN. THERE
MAY BE DEPOSITS ON THE AIRBAG UNIT AND
OTHER INTERIOR SURFACES. IN LARGE DOSES,
THESE DEPOSITS MAY CAUSE IRRITATION TO THE
SKIN AND EYES.
(1) Disconnect and isolate the battery negative
cable. Wait two minutes for the system capacitor to
discharge before further service.
(2) Remove the passenger airbag door from the
instrument panel. (Refer to 8 - ELECTRICAL/RE-
STRAINTS/PASSENGER AIRBAG DOOR - REMOV-
AL).
(3) Remove the two screws on each side of the pas-
senger airbag that secure the passenger airbag to the
metal brackets on the instrument panel support
structure (Fig. 25).
(4) Disengage the passenger airbag wire harness
connector from the retainer securing the connector to
the metal bracket on the instrument panel support
structure above the airbag by sliding both halves of
the connector to the left.
(5) Disconnect the passenger airbag pigtail wire
connector from the instrument panel wire harness
connector for the airbag. To disconnect the connector:
(a) Slide the red Connector Position Assurance
(CPA) lock on the top of the connector toward the
side of the connector.
(b) Depress the connector latch tab and pull the
two halves of the connector straight away from
each other.
Fig. 25 Passenger Airbag Remove/Install
1 - PASSENGER AIRBAG
2 - WIRE HARNESS CONNECTOR
3 - SCREW (4)
4 - GLOVE BOX LATCH STRIKER
8O - 28 RESTRAINTSKJ
PASSENGER AIRBAG (Continued)

(6) Remove the passenger airbag from the instru-
ment panel as a unit.
(7) If the passenger airbag has been deployed, both
passenger airbag mounting brackets on the instru-
ment panel must be replaced. (Refer to 8 - ELECTRI-
CAL/RESTRAINTS/PASSENGER AIRBAG
MOUNTING BRACKET - REMOVAL).
INSTALLATION
The following procedure is for replacement of a
faulty or damaged passenger airbag. If the passenger
airbag has been deployed, both passenger airbag
mounting brackets on the instrument panel must
also be replaced. (Refer to 8 - ELECTRICAL/RE-
STRAINTS/PASSENGER AIRBAG MOUNTING
BRACKET - INSTALLATION).
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
WARNING: WHEN REMOVING A DEPLOYED AIR-
BAG, RUBBER GLOVES, EYE PROTECTION, AND A
LONG-SLEEVED SHIRT SHOULD BE WORN. THERE
MAY BE DEPOSITS ON THE AIRBAG UNIT AND
OTHER INTERIOR SURFACES. IN LARGE DOSES,
THESE DEPOSITS MAY CAUSE IRRITATION TO THE
SKIN AND EYES.
WARNING: USE EXTREME CARE TO PREVENT ANY
FOREIGN MATERIAL FROM ENTERING THE PAS-
SENGER AIRBAG, OR BECOMING ENTRAPPED
BETWEEN THE PASSENGER AIRBAG CUSHION
AND THE PASSENGER AIRBAG DOOR. FAILURE TO
OBSERVE THIS WARNING COULD RESULT IN
OCCUPANT INJURIES UPON AIRBAG DEPLOY-
MENT.
(1) Position the passenger airbag unit into the
instrument panel (Fig. 25).(2) Reconnect the passenger airbag pigtail wire
connector to the instrument panel wire harness con-
nector for the airbag. Be certain that the latch on the
connector and the red Connector Position Assurance
(CPA) lock are each fully engaged.
(3) Engage the passenger airbag wire harness con-
nector onto the retainer that secures the connector to
the metal bracket on the instrument panel support
structure above the airbag by aligning the right end
of the connector slot with the left end of the retainer
and sliding both halves of the connector to the right.
(4) Carefully position the passenger airbag unit
onto the two metal brackets on the instrument panel
support structure, being certain that the alignment
pin features on each side of the airbag are engaged
in the alignment holes in the metal brackets.
(5) Install and tighten the two screws on each side
of the passenger airbag that secure the passenger
airbag to the metal brackets on the instrument panel
support structure. Tighten the screws to 6 N´m (55
in. lbs.).
(6) Reinstall the passenger airbag door onto the
instrument panel. (Refer to 8 - ELECTRICAL/RE-
STRAINTS/PASSENGER AIRBAG DOOR - INSTAL-
LATION).
(7) Do not reconnect the battery negative cable at
this time. The airbag system verification test proce-
dure should be performed following service of any
supplemental restraint system component. (Refer to
8 - ELECTRICAL/RESTRAINTS - STANDARD PRO-
CEDURE - VERIFICATION TEST).
PASSENGER AIRBAG DOOR
REMOVAL
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
KJRESTRAINTS 8O - 29
PASSENGER AIRBAG (Continued)

WARNING: WHEN REMOVING A DEPLOYED AIR-
BAG, RUBBER GLOVES, EYE PROTECTION, AND A
LONG-SLEEVED SHIRT SHOULD BE WORN. THERE
MAY BE DEPOSITS ON THE AIRBAG UNIT AND
OTHER INTERIOR SURFACES. IN LARGE DOSES,
THESE DEPOSITS MAY CAUSE IRRITATION TO THE
SKIN AND EYES.
(1) Disconnect and isolate the battery negative
cable. Wait two minutes for the system capacitor to
discharge before further service.
(2) Remove the top cover from the instrument
panel. (Refer to 23 - BODY/INSTRUMENT PANEL/
INSTRUMENT PANEL TOP COVER - REMOVAL).
(3) Remove the passenger side bezel from the
upper glove box opening of the instrument panel.
(Refer to 23 - BODY/INSTRUMENT PANEL/IP PAS-
SENGER SIDE BEZEL - REMOVAL).
(4) Remove the three small screws that secure the
passenger airbag door to the glove box opening upper
reinforcement (Fig. 26).
(5) Remove the three large screws that secure the
passenger airbag door to the glove box opening upper
reinforcement.
(6) Remove the one small screw that secures the
passenger airbag door to the top of the instrument
panel.
(7) Remove the four large screws that secure the
passenger airbag door to the top of the instrument
panel.
(8) Remove the passenger airbag door from the
instrument panel.INSTALLATION
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
WARNING: THE PASSENGER AIRBAG DOOR MUST
NEVER BE PAINTED. REPLACEMENT PASSENGER
AIRBAG DOORS ARE SERVICED IN THE ORIGINAL
COLORS. PAINT MAY CHANGE THE WAY IN WHICH
THE MATERIAL OF THE AIRBAG DOOR RESPONDS
TO AN AIRBAG DEPLOYMENT. FAILURE TO OBSERVE
THIS WARNING COULD RESULT IN OCCUPANT INJU-
RIES UPON AIRBAG DEPLOYMENT.
(1) Position the passenger airbag door onto the
instrument panel (Fig. 26).
(2) Install and tighten the four large screws that
secure the passenger airbag door to the top of the
instrument panel. Tighten the screws to 4 N´m (35
in. lbs.).
(3) Install and tighten the one small screw that
secures the passenger airbag door to the top of the
instrument panel. Tighten the screw to 2 N´m (20 in.
lbs.).
(4) Install and tighten the three large screws that
secure the passenger airbag door to the glove box
opening upper reinforcement. Tighten the screws to 4
N´m (35 in. lbs.).
(5) Install and tighten the three small screws that
secure the passenger airbag door to the glove box
opening upper reinforcement. Tighten the screws to 2
N´m (20 in. lbs.).
(6) Reinstall the passenger side bezel onto the
upper glove box opening of the instrument panel.
(Refer to 23 - BODY/INSTRUMENT PANEL/IP PAS-
SENGER SIDE BEZEL - INSTALLATION).
(7) Reinstall the top cover onto the instrument
panel. (Refer to 23 - BODY/INSTRUMENT PANEL/
INSTRUMENT PANEL TOP COVER - INSTALLA-
TION).
(8) Reconnect the battery negative cable.
Fig. 26 Passenger Airbag Door Remove/Install
1 - PASSENGER AIRBAG DOOR
2 - LARGE SCREW (7)
3 - SMALL SCREW (4)
8O - 30 RESTRAINTSKJ
PASSENGER AIRBAG DOOR (Continued)

Theft Security System (VTSS) have a door cylinder
lock switch secured to the back of the key lock cylin-
der inside each front door (Fig. 2). The door cylinder
lock switch is a resistor multiplexed momentary
switch that is hard wired in series between the door
lock switch ground and right or left cylinder lock
switch mux circuits of the Body Control Module
(BCM) through the front door wire harness. The door
cylinder lock switches are driven by the key lock cyl-
inders and contain two internal resistors. One resis-
tor value is used for the Lock position, and one for
the Unlock position.
The door cylinder lock switches cannot be adjusted
or repaired and, if faulty or damaged, they must be
replaced.
OPERATION
The door cylinder lock switches are actuated by the
key lock cylinder when the key is inserted in the lock
cylinder and turned to the lock or unlock positions.
The door cylinder lock switch close a circuit between
the door lock switch ground circuit and the left or
right cylinder lock switch mux circuits through one of
two internal resistors for the Body Control Module
(BCM) when either front door key lock cylinder is in
the Lock, or Unlock positions. The BCM reads the
switch status through an internal pull-up, then uses
this information as an input for the Vehicle Theft
Security System (VTSS) operation.
The door cylinder lock switches and circuits can be
diagnosed using conventional diagnostic tools and
methods.
DIAGNOSIS AND TESTING - DOOR CYLINDER
LOCK SWITCH
Refer to the appropriate wiring information. The
wiring information includes wiring diagrams, proper
wire and connector repair procedures, further details
on wire harness routing and retention, as well as
pin-out and location views for the various wire har-
ness connectors, splices and grounds.
(1) Disconnect the door cylinder lock switch pigtail
wire connector from the door wire harness connector.
(2) Using a ohmmeter, check the switch resistance
checks between the two terminals in the door cylin-
der lock switch pigtail wire connector. Actuate the
switch by rotating the key in the door lock cylinder
to test for the proper resistance values in each of the
two switch positions, as shown in the Door Cylinder
Lock Switch Test table.
DOOR CYLINDER LOCK SWITCH TEST
Switch Position Resistance
( 10%)
Left Side Right Side
Lock (Clockwise) Unlock
(Counterclockwise)473 Ohms
Unlock
(Counterclockwise)Lock (Clockwise) 1.994 Kilohms
(3) If a door cylinder lock switch fails either of the
resistance tests, replace the faulty switch.
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) Remove the outside door handle unit from the
outer door panel. (Refer to 23 - BODY/DOOR -
FRONT/EXTERIOR HANDLE - REMOVAL).
(3) Remove the retainer clip from the pin on the
back of the door lock cylinder (Fig. 3).
(4) Remove the lock lever from the pin on the back
of the door lock cylinder.
(5) Remove the door cylinder lock switch from the
back of the lock cylinder.
INSTALLATION
(1) Position the door cylinder lock switch onto the
back of the lock cylinder with its pigtail wire harness
oriented toward the bottom (Fig. 3).
Fig. 3 Lock Cylinder Lever Retainer Remove/Install
1 - LEVER
2 - RETAINER
3 - LOCK CYLINDER
4 - SWITCH
5 - PLIERS
6 - OUTSIDE DOOR HANDLE
8Q - 10 VEHICLE THEFT SECURITYKJ
DOOR CYLINDER LOCK SWITCH (Continued)

electronic circuitry of the ITM which includes a
microprocessor, and an ultrasonic receive transducer.
A molded plastic connector receptacle containing six
terminal pins that is soldered to a small circuit board
and extends through a clearance hole in the left front
corner of the ITM housing, and an ultrasonic trans-
mit transducer housing extends from the center of
the right side of the ITM housing. Both the transmit
transducer on the right side of the module and the
receive transducer on the ITM circuit board are
aimed through two small round holes in the sight
shield of the trim cover. The ITM is connected to the
vehicle electrical system by a dedicated take out and
connector of the overhead wire harness that is inte-
gral to the headliner.
The ITM unit cannot be adjusted or repaired and,
if faulty or damaged, it must be replaced. The ITM is
serviced as a unit with the trim cover.
OPERATION
The microprocessor in the Intrusion Transceiver
Module (ITM) contains the motion sensor logic cir-
cuits and controls all of the features of the premium
version of the Vehicle Theft Alarm (VTA). The ITM
uses On-Board Diagnostics (OBD) and can communi-
cate with other electronic modules in the vehicle as
well as with the DRBIIItscan tool using the Pro-
grammable Communications Interface (PCI) data bus
network. This method of communication is used by
the ITM to communicate with the Body Control Mod-
ule (BCM) and for diagnosis and testing through the
16-way data link connector located on the driver side
lower edge of the instrument panel. The ITM also
communicates with the alarm siren over a dedicated
serial bus circuit.
The ITM microprocessor continuously monitors
inputs from its on-board motion sensor circuitry as
well as inputs from the BCM and the alarm siren
module. The on-board ITM motion sensor circuitry
transmits ultrasonic signals into the vehicle cabin
through a transmit transducer, then listens to the
returning signals as the bounce off of objects in the
vehicle interior. If an object is moving in the interior,
a detection circuit in the ITM senses this movement
through the modulation of the returning ultrasonic
signals that occurs due to the Doppler effect. The
motion detect function of the ITM can be disabled by
depressing the ªLockº button on the Remote Keyless
Entry (RKE) transmitter three times within fifteen
seconds, while the security indicator is still flashing
rapidly. The ITM will signal the alarm siren module
to provide a single siren ªchirpº as an audible confir-
mation that the motion sensor function has been dis-
abled.
If movement is detected, the ITM sends an elec-
tronic message to the BCM over the PCI data bus toflash the exterior lighting and sends an electronic
message to the alarm siren module over a dedicated
serial bus line to sound the siren. When the BCM
detects a breach in the perimeter protection through
a door, tailgate, flip-up glass, or hood ajar switch
input, it sends an electronic message to the ITM and
the ITM sends an electronic message to the BCM
over the PCI data bus to flash the exterior lighting
and sends an electronic message to the alarm siren
module over a dedicated serial bus line to sound the
siren. The ITM also monitors inputs from the alarm
siren module for siren battery or siren input/output
circuit tamper alerts, and siren battery condition
alerts, then sets active and stored Diagnostic Trouble
Codes (DTC) for any monitored system faults it
detects. An active fault only remains for the current
ignition switch cycle, while a stored fault causes a
DTC to be stored in memory by the ITM. If a fault
does not recur for fifty ignition cycles, the ITM will
automatically erase the stored DTC.
The ITM is connected to the vehicle electrical sys-
tem through a dedicated take out and connector of
the overhead wire harness. The ITM receives battery
current on a fused B(+) circuit through a fuse in the
Junction Block (JB), and receives ground through a
ground circuit and take out of the body wire harness.
This ground take out has a single eyelet terminal
connector that is secured by a ground screw to the
base of the left D-pillar behind the quarter trim
panel. These connections allow the ITM to remain
operational, regardless of the ignition switch position.
The hard wired inputs and outputs for the ITM may
be diagnosed and tested using conventional diagnos-
tic tools and procedures. However, conventional diag-
nostic methods will not prove conclusive in the
diagnosis of the ITM, the PCI data bus network, or
the electronic message inputs to and outputs from
the ITM. The most reliable, efficient, and accurate
means to diagnose the ITM, the PCI data bus net-
work, and the electronic message inputs to and out-
puts from the ITM requires the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic infor-
mation.
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) While pulling downward lightly on either rear
corner of the Intrusion Transceiver Module (ITM)
trim cover, insert a small thin-bladed screwdriver
through each of the service holes on the rear edge of
the trim cover to depress and release the two inte-
gral rear latch features of the module from the
mounting bracket above the headliner (Fig. 11).
(3) Pull the ITM trim cover rearward far enough
to disengage the two integral front latch features of
KJVEHICLE THEFT SECURITY 8Q - 15
INTRUSION TRANSCEIVER MODULE (Continued)