continuity. If OK, go to Step 6. If not OK, repair the
open ground circuit(s) to ground (G202) as required.
(6) Reconnect the battery negative cable. Check for
battery voltage at the fused B(+) circuit cavity of the
instrument panel wire harness connector for the
SKIM. If OK, go to Step 7. If not OK, repair the open
fused B(+) circuit between the SKIM and the JB as
required.
(7) Turn the ignition switch to the On position.
Check for battery voltage at the fused ignition switch
output (run-start) circuit cavity of the instrument
panel wire harness connector for the SKIM. If OK,
use a DRBIIItscan tool to complete the diagnosis of
the SKIS. Refer to the appropriate diagnostic infor-
mation. If not OK, repair the open fused ignition
switch output (run-start) circuit between the SKIM
and the JB as required.
SKIS INDICATOR FLASHES UPON IGNITION ªONº OR
LIGHTS SOLID FOLLOWING BULB TEST
A SKIS indicator that flashes following the ignition
switch being turned to the On position indicates that
an invalid key has been detected, or that a key-re-
lated fault has been set. A SKIS indicator that lights
solid following a successful bulb test indicates that
the SKIM has detected a system malfunction or that
the SKIS is inoperative. In either case, fault informa-
tion will be stored in the SKIM memory. For retrieval
of this fault information and further diagnosis of the
SKIS, the PCI data bus, the SKIM electronic mes-
sage outputs to the instrument cluster that control
the SKIS indicator and chime, or the electronic mes-
sage inputs and outputs between the SKIM and the
Powertrain Control Module (PCM) that control
engine operation, a DRBIIItscan tool is required.
Refer to the appropriate diagnostic information. Fol-
lowing are preliminary troubleshooting guidelines to
be followed during diagnosis using a DRBIIItscan
tool:
(1) Using the DRBIIItscan tool, read and record
the faults as they exist in the SKIM when you first
begin your diagnosis of the vehicle. It is important to
document these faults because the SKIM does not
differentiate between historical faults (those that
have occurred in the past) and active faults (those
that are currently present). If this problem turns out
to be an intermittent condition, this information may
become invaluable to your diagnosis.
(2) Using the DRBIIItscan tool, erase all of the
faults from the SKIM.
(3) Cycle the ignition switch to the Off position,
then back to the On position.
(4) Using the DRBIIItscan tool, read any faults
that are now present in the SKIM. These are the
active faults.(5) Using this active fault information, refer to the
proper procedure in the appropriate diagnostic infor-
mation for the specific additional diagnostic steps.
STANDARD PROCEDURE
STANDARD PROCEDURE - SKIS
INITIALIZATION
The Sentry Key Immobilizer System (SKIS) must
be initialized following a Sentry Key Immobilizer
Module (SKIM) replacement. SKIS initialization
requires the use of a DRBIIItscan tool. Initialization
will also require that you have access to the unique
four-digit PIN code that was assigned to the original
SKIM. The PIN codemustbe used to enter the
Secured Access Mode in the SKIM. This PIN number
may be obtained from the vehicle owner, from the
original vehicle invoice, or from the DaimlerChrysler
Customer Center. (Refer to 8 - ELECTRICAL/ELEC-
TRONIC CONTROL MODULES - STANDARD PRO-
CEDURE - PCM/SKIM PROGRAMMING).
NOTE: If a Powertrain Control Module (PCM) is
replaced on a vehicle equipped with the Sentry Key
Immobilizer System (SKIS), the unique Secret Key
data must be transferred from the Sentry Key
Immobilizer Module (SKIM) to the new PCM using
the PCM replacement procedure. This procedure
also requires the use of a DRBIIITscan tool and the
unique four-digit PIN code to enter the Secured
Access Mode in the SKIM. Refer to the appropriate
diagnostic information for the proper PCM replace-
ment procedures.
STANDARD PROCEDURE - SENTRY KEY
TRANSPONDER PROGRAMMING
All Sentry Keys included with the vehicle are pre-
programmed to work with the Sentry Key Immobi-
lizer System (SKIS) when it is shipped from the
factory. The Sentry Key Immobilizer Module (SKIM)
can be programmed to recognize up to a total of eight
Sentry Keys. When programming a blank Sentry Key
transponder, the key must first be cut to match the
ignition switch lock cylinder in the vehicle for which
it will be used. Once the additional or new key has
been cut, the SKIM must be programmed to recog-
nize it as a valid key. There are two possible methods
to program the SKIM to recognize a new or addi-
tional valid key, the Secured Access Method and the
Customer Learn Method. Following are the details of
these two programming methods.
8Q - 8 VEHICLE THEFT SECURITYKJ
VEHICLE THEFT SECURITY (Continued)
electronic circuitry of the ITM which includes a
microprocessor, and an ultrasonic receive transducer.
A molded plastic connector receptacle containing six
terminal pins that is soldered to a small circuit board
and extends through a clearance hole in the left front
corner of the ITM housing, and an ultrasonic trans-
mit transducer housing extends from the center of
the right side of the ITM housing. Both the transmit
transducer on the right side of the module and the
receive transducer on the ITM circuit board are
aimed through two small round holes in the sight
shield of the trim cover. The ITM is connected to the
vehicle electrical system by a dedicated take out and
connector of the overhead wire harness that is inte-
gral to the headliner.
The ITM unit cannot be adjusted or repaired and,
if faulty or damaged, it must be replaced. The ITM is
serviced as a unit with the trim cover.
OPERATION
The microprocessor in the Intrusion Transceiver
Module (ITM) contains the motion sensor logic cir-
cuits and controls all of the features of the premium
version of the Vehicle Theft Alarm (VTA). The ITM
uses On-Board Diagnostics (OBD) and can communi-
cate with other electronic modules in the vehicle as
well as with the DRBIIItscan tool using the Pro-
grammable Communications Interface (PCI) data bus
network. This method of communication is used by
the ITM to communicate with the Body Control Mod-
ule (BCM) and for diagnosis and testing through the
16-way data link connector located on the driver side
lower edge of the instrument panel. The ITM also
communicates with the alarm siren over a dedicated
serial bus circuit.
The ITM microprocessor continuously monitors
inputs from its on-board motion sensor circuitry as
well as inputs from the BCM and the alarm siren
module. The on-board ITM motion sensor circuitry
transmits ultrasonic signals into the vehicle cabin
through a transmit transducer, then listens to the
returning signals as the bounce off of objects in the
vehicle interior. If an object is moving in the interior,
a detection circuit in the ITM senses this movement
through the modulation of the returning ultrasonic
signals that occurs due to the Doppler effect. The
motion detect function of the ITM can be disabled by
depressing the ªLockº button on the Remote Keyless
Entry (RKE) transmitter three times within fifteen
seconds, while the security indicator is still flashing
rapidly. The ITM will signal the alarm siren module
to provide a single siren ªchirpº as an audible confir-
mation that the motion sensor function has been dis-
abled.
If movement is detected, the ITM sends an elec-
tronic message to the BCM over the PCI data bus toflash the exterior lighting and sends an electronic
message to the alarm siren module over a dedicated
serial bus line to sound the siren. When the BCM
detects a breach in the perimeter protection through
a door, tailgate, flip-up glass, or hood ajar switch
input, it sends an electronic message to the ITM and
the ITM sends an electronic message to the BCM
over the PCI data bus to flash the exterior lighting
and sends an electronic message to the alarm siren
module over a dedicated serial bus line to sound the
siren. The ITM also monitors inputs from the alarm
siren module for siren battery or siren input/output
circuit tamper alerts, and siren battery condition
alerts, then sets active and stored Diagnostic Trouble
Codes (DTC) for any monitored system faults it
detects. An active fault only remains for the current
ignition switch cycle, while a stored fault causes a
DTC to be stored in memory by the ITM. If a fault
does not recur for fifty ignition cycles, the ITM will
automatically erase the stored DTC.
The ITM is connected to the vehicle electrical sys-
tem through a dedicated take out and connector of
the overhead wire harness. The ITM receives battery
current on a fused B(+) circuit through a fuse in the
Junction Block (JB), and receives ground through a
ground circuit and take out of the body wire harness.
This ground take out has a single eyelet terminal
connector that is secured by a ground screw to the
base of the left D-pillar behind the quarter trim
panel. These connections allow the ITM to remain
operational, regardless of the ignition switch position.
The hard wired inputs and outputs for the ITM may
be diagnosed and tested using conventional diagnos-
tic tools and procedures. However, conventional diag-
nostic methods will not prove conclusive in the
diagnosis of the ITM, the PCI data bus network, or
the electronic message inputs to and outputs from
the ITM. The most reliable, efficient, and accurate
means to diagnose the ITM, the PCI data bus net-
work, and the electronic message inputs to and out-
puts from the ITM requires the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic infor-
mation.
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) While pulling downward lightly on either rear
corner of the Intrusion Transceiver Module (ITM)
trim cover, insert a small thin-bladed screwdriver
through each of the service holes on the rear edge of
the trim cover to depress and release the two inte-
gral rear latch features of the module from the
mounting bracket above the headliner (Fig. 11).
(3) Pull the ITM trim cover rearward far enough
to disengage the two integral front latch features of
KJVEHICLE THEFT SECURITY 8Q - 15
INTRUSION TRANSCEIVER MODULE (Continued)
the engine compartment, on the front extension of
the right front wheel house panel below and behind
the right headlamp. This unit is designed to provide
the audible alert requirements for the ROW premium
VTA.
The alarm siren module consists of microprocessor-
based electronic control circuitry, the siren, and a
nickel metal hydride backup battery. All of the alarm
module components are protected and sealed within
a black molded plastic housing. A stamped steel
mounting bracket is secured to the module with
three stud plates and nuts that fit into slotted holes
at the top and each side of the bracket. The front
surface of the bracket features a tightly grouped
series of small holes that serves as an outlet for the
audible output of the alarm siren. The bottom of the
mounting bracket is bent at a right angle and has an
integral locating tab feature. Two mounting holes in
the horizontal surface of the bracket are used to
secure the alarm siren module to the wheel house
extension with two screws. An integral connector
receptacle extends forward from the upper left corner
of the alarm siren housing, and connects the unit to
the vehicle electrical system through a dedicated
take out and connector of the headlamp and dash
wire harness.
The alarm siren module cannot be repaired or
adjusted and, if faulty or damaged, it must be
replaced.
OPERATION
The microprocessor within the alarm siren module
performs the tasks required to provide the siren unit
features and functions based upon internal program-
ming and electronic arm and disarm message inputs
received from the Intrusion Transceiver Module
(ITM) over a dedicated serial bus communication cir-
cuit. The alarm siren module will self-detect prob-
lems with its internal and external power supply and
communication circuits, then send electronic mes-
sages indicating the problem to the ITM upon receiv-
ing a request from the ITM. The ITM will store a
Diagnostic Trouble Code (DTC) for a detected alarm
siren module fault that can be retrieved with the
DRBIIItscan tool over the Programmable Communi-
cations Interface (PCI) data bus network through the
16-way data link connector located on the driver side
lower edge of the instrument panel.
When the Rest-Of-World (ROW) premium version
of the Vehicle Theft Alarm (VTA) is armed, the alarm
siren module microprocessor continuously monitors
inputs from the ITM for messages to sound its inter-
nal siren and enters its auto-detect mode. While in
the auto-detect mode, if the alarm siren module
detects that its power supply or communication cir-
cuits are being tampered with or have been sabo-taged, it will sound an alarm and continue to operate
through its on-board backup battery. If the arm siren
module is in its disarmed mode when its power sup-
ply or communication circuits are interrupted, the
siren will not sound. The alarm module will also
notify the ITM when the backup battery requires
charging, and the ITM will send a message that will
allow the backup battery to be charged through the
battery current and ground circuits to the alarm
module only when the ignition switch is in the On
position and the engine is running. This will prevent
the charging of the alarm backup battery from
depleting the charge in the main vehicle battery
while the vehicle is not being operated.
The alarm siren module receives battery current
on a fused B(+) circuit through a fuse in the Power
Distribution Center (PDC), and receives ground
through a ground circuit and take out of the head-
lamp and dash wire harness. This ground take out
has a single eyelet terminal connector that is secured
by a ground screw to the left inner fender shield in
the engine compartment. These connections allow the
alarm siren module to remain operational, regardless
of the ignition switch position. The hard wired inputs
and outputs for the alarm siren module may be diag-
nosed and tested using conventional diagnostic tools
and procedures. However, conventional diagnostic
methods will not prove conclusive in the diagnosis of
the internal circuitry or the backup battery of the
alarm siren module, the ITM, the serial bus commu-
nication line, or the electronic message inputs to and
outputs from the alarm siren module. The most reli-
able, efficient, and accurate means to diagnose the
alarm siren module, the ITM, the serial bus commu-
nication line, and the electronic message inputs to
and outputs from the alarm siren module requires
the use of a DRBIIItscan tool. Refer to the appro-
priate diagnostic information.
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) Disconnect the headlamp and dash wire har-
ness connector for the alarm siren module from the
module connector receptacle (Fig. 14).
(3) Remove the two screws that secure the alarm
siren module to the front extension of the right front
wheel house panel.
(4) Remove the alarm siren module from the front
extension of the right front wheel house panel.
INSTALLATION
(1) Position the alarm siren module onto the front
extension of the right front wheel house panel (Fig.
14).
KJVEHICLE THEFT SECURITY 8Q - 17
SIREN (Continued)
mation includes wiring diagrams, proper wire and
connector repair procedures, details of wire harness
routing and retention, connector pin-out information
and location views for the various wire harness con-
nectors, splices and grounds.
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
SIDE CURTAIN AIRBAG, OR INSTRUMENT PANEL
COMPONENT DIAGNOSIS OR SERVICE. DISCON-
NECT AND ISOLATE THE BATTERY NEGATIVE
(GROUND) CABLE, THEN WAIT TWO MINUTES FOR
THE SYSTEM CAPACITOR TO DISCHARGE BEFORE
PERFORMING FURTHER DIAGNOSIS OR SERVICE.
THIS IS THE ONLY SURE WAY TO DISABLE THE
SUPPLEMENTAL RESTRAINT SYSTEM. FAILURE TO
TAKE THE PROPER PRECAUTIONS COULD
RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT
AND POSSIBLE PERSONAL INJURY.
(1) Check that the interior lighting switch on the
left (lighting) control stalk of the multi-function
switch is not in the dome lamp disable position. With
all four doors and the tailgate closed, open the rear
flip-up glass. The interior lamps should light. Close
the rear flip-up glass. Note whether the interior
lamps remain lighted. They should turn off after
about thirty seconds. If OK, go to Step 2. If not OK,
go to Step 9.
(2) Check the fused B(+) fuse (Fuse 17 - 15
ampere) in the Junction Block (JB). If OK, go to Step
3. If not OK, repair the shorted circuit or component
as required and replace the faulty fuse.
(3) Check for battery voltage at the fused B(+) fuse
(Fuse 17 - 15 ampere) in the JB. If OK, go to Step 4.
If not OK, repair the open fused B(+) circuit between
the JB and the Power Distribution Center (PDC) as
required.
(4) Check the fused ignition switch output (run-
acc) fuse (Fuse 22 - 10 ampere) in the JB. If OK, go
to Step 5. If not OK, repair the shorted circuit or
component as required and replace the faulty fuse.
(5) Turn the ignition switch to the On position.
Check for battery voltage at the fused ignition switch
output (run-acc) fuse (Fuse 22 - 10 ampere) in the
JB. If OK, turn the ignition switch to the Off position
and go to Step 6. If not OK, repair the open fused
ignition switch output (run-acc) circuit between the
JB and the ignition switch as required.
(6) Disconnect and isolate the battery negative
cable. Disconnect the instrument panel wire harness
connector for the multi-function switch (Connector
C-2) from the switch connector receptacle. Reconnect
the battery negative cable. Turn the ignition switchto the On position. Check for battery voltage at the
fused ignition switch output (run-acc) circuit cavity of
the instrument panel wire harness connector for the
multi-function switch (Connector C-2). If OK, go to
Step 7. If not OK, repair the open fused ignition
switch output (run-acc) circuit between the multi-
function switch and the JB as required.
(7) Turn the ignition switch to the Off position.
Disconnect and isolate the battery negative cable.
Test the multi-function switch. (Refer to 8 - ELEC-
TRICAL/LAMPS/LIGHTING - EXTERIOR/MULTI-
FUNCTION SWITCH - DIAGNOSIS AND
TESTING). If the multi-function switch tests OK,
reconnect the instrument panel wire harness connec-
tors for the multi-function switch to the switch con-
nector receptacles and go to Step 8. If the multi-
function switch does not test OK, replace the faulty
switch.
(8) Remove the tailgate inner trim panel. Discon-
nect the tailgate wire harness connector for the rear
wiper module from the module connector receptacle.
Check for continuity between the ground circuit cav-
ity of the tailgate wire harness connector for the rear
wiper module and a good ground. There should be
continuity. If OK, go to Step 9. If not OK, repair the
open ground circuit to ground (G312) as required.
(9) Check for continuity between the flip-up glass
ajar switch sense circuit cavity of the tailgate wire
harness connector for the rear wiper module and a
good ground. There should be continuity with the
rear flip-up glass open, and no continuity with the
rear flip-up glass closed. If OK, go to Step 10. If not
OK, repair the open flip-up glass ajar circuit between
the rear wiper module and the flip-up glass ajar
switch as required.
(10) Reconnect the battery negative cable. Check
for battery voltage at the fused B(+) circuit cavity of
the tailgate wire harness connector for the rear wiper
module. If OK, go to Step 11. If not OK, repair the
open fused B(+) circuit between the rear wiper mod-
ule and the JB as required.
(11) Turn the ignition switch to the On position.
Turn the control ring on the right (wiper) control
stalk of the multi-function switch to the Delay posi-
tion. Check for battery voltage at the rear wiper
intermittent driver circuit cavity of the tailgate wire
harness connector for the rear wiper module. If OK,
go to Step 12. If not OK, repair the open rear wiper
intermittent driver circuit between the rear wiper
module and the multi-function switch as required.
(12) Turn the control ring on the right (wiper) con-
trol stalk of the multi-function switch to the On posi-
tion. Check for battery voltage at the rear wiper on
driver circuit cavity of the tailgate wire harness con-
nector for the rear wiper module. If OK, replace the
faulty rear wiper module. If not OK, repair the open
KJREAR WIPERS/WASHERS 8R - 31
REAR WIPERS/WASHERS (Continued)
(3) Raise the pivot block latch release tab until it
is perpendicular to the rear wiper blade superstruc-
ture (Fig. 14).
(4) Insert the hook formation on the tip of the
wiper arm through the window in the wiper blade
pivot block/latch unit.
(5) Slide the wiper blade pivot block/latch up into
the hook formation on the tip of the wiper arm until
the hook is firmly seated against the pivot block.
(6) Press the pivot block latch release tab down-
ward until it snaps into its locked position over the
top of the wiper arm.
(7) Gently lower the wiper arm and place the arm
support in the tailgate park ramp.
REAR WIPER MOTOR
DESCRIPTION
The rear wiper motor is concealed within the tail-
gate, below the rear flip-up glass opening and behind
the tailgate inner trim panel. The end of the motor
output shaft that protrudes through the tailgate
outer panel to drive the rear wiper arm and blade is
the only visible component of the rear wiper motor
(Fig. 15). A rubber gasket, a bezel, and a nut secure
and seal the motor output shaft to the tailgate outer
panel. A molded plastic nut cover snaps onto the
bezel to conceal the nut and improve appearance. An
integral connector receptacle connects the rear wipermotor to the vehicle electrical system through a ded-
icated take out and connector of the tailgate wire
harness. The rear wiper motor consists of the follow-
ing major components:
²Bracket- The rear wiper motor bracket consists
of a stamped steel mounting plate for the wiper
motor that is secured with screws through two rub-
ber insulators to the tailgate inner panel.
²Rear Wiper Module- The rear wiper motor
electronic controls are concealed beneath a molded
plastic cover and includes the rear wiper system elec-
tronic logic and rear wiper motor electronic controls.
²Motor- The permanent magnet rear wiper
motor is secured with screws to the rear wiper motor
bracket. The wiper motor includes an integral trans-
mission, and the motor output shaft.
The rear wiper motor cannot be adjusted or
repaired. If any component of the motor is faulty or
damaged, the entire rear wiper motor unit must be
replaced. The motor output shaft gasket, bezel, nut,
and nut cover are available for service replacement.
OPERATION
The rear wiper motor receives non-switched bat-
tery current through a fuse in the Junction Block
(JB) on a fused B(+) circuit and is connected to
ground at all times. The rear wiper motor operation
is controlled by the vehicle operator through battery
current signal inputs received by the rear wiper
motor electronic control module from the rear wiper
switch circuitry that is integral to the right (wiper)
control stalk of the multi-function switch on the
steering column. The module also receives an exter-
nal control input from the flip-up glass ajar switch
sense circuit. If the rear wiper module senses that
the flip-up glass is ajar, it will not allow the rear
wiper motor to operate.
The rear wiper module electronic control logic uses
these inputs, its internal inputs, and its program-
ming to provide a continuous wipe mode, an inter-
mittent wipe mode, a wipe-after-wash mode, and off-
the-glass wiper blade parking. The wiper blade
cycling is controlled by the internal electronic con-
trols of the module. The module controls current flow
to the wiper motor brushes and provides an elec-
tronic speed control that speeds the wiper blade near
the center of the glass, but slows the wiper blade
during directional reversals at each end of the wipe
pattern and during wiper blade off-the-glass parking
for quieter operation. The wiper motor transmission
converts the rotary output of the wiper motor to the
back and forth wiping motion of the rear wiper arm
and blade on the rear flip-up glass.
Fig. 15 Rear Wiper Motor
1 - SCREW (2)
2 - INSULATOR (2)
3 - BRACKET
4 - OUTPUT SHAFT
5 - SEAL
6 - CONNECTOR RECEPTACLE
7 - COVER
8 - MOTOR
KJREAR WIPERS/WASHERS 8R - 41
REAR WIPER BLADE (Continued)
8W-02 COMPONENT INDEX
Component Page
A/C Compressor Clutch Relay........... 8Wa-42
A/C Compressor Clutch................ 8Wa-42
A/C-Heater Control................... 8Wa-42
A/C High Pressure Switch.............. 8Wa-42
A/C Low Pressure Switch............... 8Wa-42
A/C Pressure Transducer............... 8Wa-42
Accelerator Pedal Position Sensor........ 8Wa-30
Airbag Control Module................. 8Wa-43
Ambient Temperature Sensor............ 8Wa-45
Antenna Module...................... 8Wa-47
Antenna............................ 8Wa-47
Ash Receiver Lamp................... 8Wa-44
Auto Shut Down Relay................. 8Wa-30
Back-Up Lamp Switch................. 8Wa-31
Battery Temperature Sensor......... 8Wa-20, 30
Battery............................. 8Wa-20
Blend Door Actuator................... 8Wa-42
Blower Motor Relay................... 8Wa-42
Blower Motor Resistor Block............ 8Wa-42
Blower Motor........................ 8Wa-42
Body Control Module.................. 8Wa-45
Boost Pressure Sensor................. 8Wa-30
Brake Lamp Switch................... 8Wa-33
Brake Pressure Switch................. 8Wa-35
Cabin Heater Relay................... 8Wa-42
Cabin Heater........................ 8Wa-42
Camshaft Position Sensor.............. 8Wa-30
Capacitor........................... 8Wa-30
Cargo Lamp......................... 8Wa-44
CD Changer......................... 8Wa-47
Center High Mounted Stop Lamp........ 8Wa-51
Cigar Lighter........................ 8Wa-41
Circuit Breakers...................... 8Wa-12
Clockspring................. 8Wa-33, 41, 43, 47
Clutch Interlock Switch................ 8Wa-21
Clutch Switch Override Relay........... 8Wa-21
Coil On Plugs........................ 8Wa-30
Coil Rail............................ 8Wa-30
Compass Mini-Trip Computer........... 8Wa-49
Controller Antilock Brake.............. 8Wa-35
Courtesy Lamps...................... 8Wa-44
Crankshaft Position Sensor............. 8Wa-30
Curtain Airbags...................... 8Wa-43
Cylinder Lock Switches................ 8Wa-61
Data Link Connector.................. 8Wa-18
Daytime Running Lamp Relay........... 8Wa-50
Defogger Relay....................... 8Wa-48
Diagnostic Junction Port............... 8Wa-18
Dome Lamp......................... 8Wa-44
Door Ajar Switches.................... 8Wa-45
Door Lock Motor/Ajar Switches.......... 8Wa-61
Door Lock Relay...................... 8Wa-61Component Page
Door Lock Switches................... 8Wa-61
Door Speakers....................... 8Wa-47
Driver Airbag Squib 1................. 8Wa-43
Driver Airbag Squib 2................. 8Wa-43
Driver Door Unlock Relay.............. 8Wa-61
Driver Seat Belt Switch................ 8Wa-40
Driver Seat Belt Tensioner.............. 8Wa-43
EGR Solenoid........................ 8Wa-30
Electric Brake Provision................ 8Wa-54
Engine Control Module................ 8Wa-30
Engine Coolant Level Sensor............ 8Wa-40
Engine Coolant Temperature Sensor...... 8Wa-30
Engine Oil Pressure Sensor............. 8Wa-30
EVAP/Purge Solenoid.................. 8Wa-30
Flip-Up Glass Release Motor............ 8Wa-61
Flip-Up Glass Release Switch........... 8Wa-61
Fog Lamps.......................... 8Wa-50
Front Fog Lamp Relay................. 8Wa-50
Front Wiper Motor.................... 8Wa-53
Fuel Heater Relay.................... 8Wa-30
Fuel Heater......................... 8Wa-30
Fuel Injectors........................ 8Wa-30
Fuel Pressure Sensor.................. 8Wa-30
Fuel Pressure Solenoid................. 8Wa-30
Fuel Pump Module.................... 8Wa-30
Fuel Pump Relay..................... 8Wa-30
Fuses........................... 8Wa-10, 12
Fusible Link......................... 8Wa-20
Grounds............................ 8Wa-15
Generator........................... 8Wa-20
Glow Plugs.......................... 8Wa-30
Hazard Switch/Combination Flasher...... 8Wa-52
Headlamp Leveling Switch.............. 8Wa-50
Headlamps.......................... 8Wa-50
Heated Seats........................ 8Wa-63
High Beam Relay..................... 8Wa-50
Horns.............................. 8Wa-41
Hood Ajar Switch..................... 8Wa-45
Idle Air Control Motor................. 8Wa-30
Ignition Switch....................... 8Wa-10
Impact Sensors....................... 8Wa-43
Input Speed Sensor................... 8Wa-31
Instrument Cluster................... 8Wa-40
Instrument Panel Speakers............. 8Wa-47
Intake Air Temperature Sensor.......... 8Wa-30
Intrusion Sensor..................... 8Wa-49
Junction Block....................... 8Wa-12
Knock Sensor........................ 8Wa-30
Leak Detection Pump.................. 8Wa-30
Leveling Motors...................... 8Wa-50
License Lamp........................ 8Wa-51
Line Pressure Sensor.................. 8Wa-31
KJ8W-02 COMPONENT INDEX8Wa-02-1
8W-47 AUDIO SYSTEM
Component Page
Antenna.......................... 8Wa-47-2
Antenna Module.................... 8Wa-47-2
Body Control Module................ 8Wa-47-9
Cd Changer........................ 8Wa-47-5
Clockspring........................ 8Wa-47-9
Diagnostic Junction Port............ 8Wa-47-2, 9
Fuse 18........................... 8Wa-47-6
Fuse 20........................... 8Wa-47-2
Fuse 32........................... 8Wa-47-2
Fuse 34........................... 8Wa-47-2
G200............................. 8Wa-47-7
G301............................. 8Wa-47-6Component Page
Instrument Cluster.................. 8Wa-47-2
Junction Block.................... 8Wa-47-2, 6
Left Front Door Speaker.......... 8Wa-47-3, 7, 8
Left Instrument Panel Speaker....... 8Wa-47-3, 7
Left Rear Door Speaker............. 8Wa-47-4, 8
Left Remote Radio Switch............. 8Wa-47-9
Radio............... 8Wa-47-2, 3, 4, 5, 6, 7, 8, 9
Radio Choke................... 8Wa-47-2, 6, 7
Right Front Door Speaker......... 8Wa-47-3, 7, 8
Right Instrument Panel Speaker...... 8Wa-47-3, 7
Right Rear Door Speaker........... 8Wa-47-4, 8
Right Remote Radio Switch............ 8Wa-47-9
KJ8W-47 AUDIO SYSTEM8Wa-47-1
A/C COMPRESSOR CLUTCH - BLACK 2 WAY
CAV CIRCUIT FUNCTION
1 C3 18DB/BK A/C COMPRESSOR CLUTCH RELAY OUTPUT
2 Z246 18BK/GY GROUND
A/C HIGH PRESSURE SWITCH (DIESEL) - GRAY 2 WAY
CAV CIRCUIT FUNCTION
1 C18 20DB A/C PRESSURE SIGNAL
2 C21 18DB/OR A/C SWITCH SENSE
A/C LOW PRESSURE SWITCH - GRAY 2 WAY
CAV CIRCUIT FUNCTION
1 C21 18DB/OR A/C SWITCH SENSE
2 Z142 18BK/WT (RHD) GROUND
2 Z212 18BK/OR (LHD) GROUND
A/C PRESSURE TRANSDUCER (GAS) - BLACK 4 WAY
CAV CIRCUIT FUNCTION
1 K4 18BK/LB SENSOR GROUND
2 K6 18VT/WT 5 VOLT SUPPLY
3 C18 18DB A/C PRESSURE SIGNAL
4- -
A/C-HEATER CONTROL C1 - BLACK 7 WAY
CAV CIRCUIT FUNCTION
1 Z8 12BK/VT GROUND
2 C7 12BK/TN BLOWER MOTOR HIGH DRIVER
3 C6 12LB BLOWER MOTOR M2 DRIVER
4 C5 14LG BLOWER MOTOR M1 DRIVER
5 C4 14TN BLOWER MOTOR LOW DRIVER
6 C19 18BR A/C ON/OFF CONTROL
7 E2 20OR FUSED PANEL LAMPS DIMMER SWITCH SIGNAL
KJ8W-80 CONNECTOR PIN-OUTS8Wa-80-5