6-84 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Vehicle speed sensor (on A / T)
Counter
shaft
gearPCMC03-2
C03-13
Bl
P
C03-2
C03-13
DTC P0500 VEHICLE SPEED SENSOR (VSS) MALFUNCTION FOR A / T
VEHICLE (A / T)
CIRCUIT DESCRIPTION – Refer to Section 6E1 for VSS operation.
DTC DETECTING CONDITIONPOSSIBLE CAUSE
While fuel is kept cut at lower than 4000 r / min for
longer than 4 sec.
VSS signal not inputted.
2 driving cycle detection logic, continuous
monitoring.“BI” or “P” circuit open or short.
Vehicle speed sensor malfunction.
Foreign material being attached or sensor installed
improperly.
Gear damaged.
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester, on a level road.
1) Turn ignition switch OFF and then ON.
2) Clear DTC and warm up engine to normal operating temperature.
3) Increase vehicle speed to 50 mph, 80 km / h in “2” range.
4) Release accelerator pedal and with engine brake applied, keep vehicle coasting (fuel cut condition) for 4 sec.
or more.
5) Stop vehicle and check DTC and pending DTC.
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-87
Fig. 1 for Step 3 Fig. 2 for Step 3 Fig. 3 for Step 3
1. ISCA relay
2. Relay box
DTC P0505
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check Idle Control System.
1) Connect SUZUKI scan tool to DLC with ignition
switch OFF, set parking brake and block drive
wheels.
2) Warm up engine to normal operating
temperature.
3) Clear DTC and select “MISC TEST” mode on
SUZUKI scan tool.
Is it possible to control (increase and reduce)
engine idle speed by using SUZUKI scan tool?Check TP sensor (Go to
DTC P0121 Flow Table)
If TP sensor is OK,
intermittent trouble or
faulty ECM (PCM).
Check for intermittent
referring to “Intermittent
and Poor Connection”
in Section 0A.Go to Step 3.
3Check ISC Relay.
1) Ignition switch OFF and remove ISC relay
(“ISCA”).
2) Check for proper connection to ISC relay at
terminals 3 and 4.
3) Check resistance between each two terminals.
Between terminals 1 and 2: Infinity
Between terminals 3 and 4: 100 – 120 Ω
4) Check that there is continuity between
terminals 1 and 2 when battery is connected to
terminals 3 and 4.
Is ISC relay in good condition?Go to Step 4.Replace ISC relay.
4Check Idle Speed Control Actuator.
1) Check ISC actuator operation by referring to
ISC ACTUATOR INSPECTION in Section 6.
Is it good condition?Check “Gr / B”, “Gr / Y”,
“Gr” and “Gr / R” circuit
for open and short.
If wires and connections
are OK, substitute a
known-good ECM
(PCM) and recheck.Replace throttle lower
body with ISC actuator.
Main
fuseMain relay
EFE heater EFE heater relay
6-90 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P1250 EARLY FUEL EVAPORATION (EFE) HEATER CIRCUIT
MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
Voltage low at terminal C01-12 during engine
warming up
or
Voltage high at terminal C01-12 after engine
warming up
2 driving cycle detection logic, continuous
monitoring“Y/R”, “W” or “W/B” circuit open or short
EFE heater relay malfunction
EFE heater malfunction
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Ambient temp: –10C, 14F or higher
–Intake air temp: 70C, 158F or lower
4) Start cool engine and warm it up to normal operating temperature.
5) Check pending DTC in “ON BOARD TEST” or “PENDING DTC” mode and DTC in “DTC” mode.
1. Fuel pump
2. Fuel filter
3. Throttle body
4. Fuel injector
5. Fuel pressure regulator6. Special tool
(Fuel pressure gauge &
3-way joint)
7. Fuel feed line
8. Fuel return line
6-100 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
TABLE B-3 FUEL PRESSURE CHECK
INSPECTION
STEPACTIONYESNO
1Check Fuel Pressure (Refer to Section 6E1 for details).
1) Release fuel pressure from fuel feed line.
2) Install fuel pressure gauge.
3) Check fuel pressure by repeating ignition switch
ON and OFF. See Fig. 1.
Is fuel pressure then 160 – 210 kPa (1.6 – 2.1 kg / cm
2,
22.7 – 29.9 psi)?
Go to Step 2.Go to Step 4.
2Is 90 kPa (0.9 kg / cm2, 12.8 psi) or higher fuel
pressure retained for 1 minute after fuel pump is
stopped at Step 1?Normal fuel pressure.Go to Step 3.
31) Start engine and warm it up to normal operating
temperature.
2) Keep it running at specified idle speed.
Is fuel pressure then within 90 – 140 kPa
(0.9 – 1.4 kg / cm
2, 12.8 – 20.0 psi)?
Normal fuel pressure.Clogged vacuum
passage for fuel
pressure regulator
or
Faulty fuel pressure
regulator.
4Is there fuel leakage from fuel feed line hose, pipe or
their joint?Fuel leakage from
hose, pipe or joint.Go to Step 10.
5Was fuel pressure higher than specification in Step 1?Go to Step 6.Go to Step 7.
61) Disconnect fuel return hose from throttle body and
connect new return hose to it.
2) Insert the other end of new return hose into
approved gasoline container.
3) Operate fuel pump.
Is specified fuel pressure obtained then?Restricted fuel return
hose or pipe.Faulty fuel pressure
regulator.
7Was no fuel pressure supplied in Step 1?Go to Step 8.Go to Step 9.
An Example of Freeze Frame Data
1. Trouble Code P0102 (1st)
2. Engine Speed 782 RPM
3. Eng Cool Tmp. 80C
4. Vehicle Spd. 0 km/h
5. MAP Sensor 39 kPa
6. St. Term FT1– 0.8% Lean
7. Lg. Term FT1– 1.6% Lean
8. Fuel 1 Stat. Closed Loop
9. Fuel 2 Stat. Not used
10. Load value 25.5%
1st, 2nd or 3rd in parentheses here represents which
position in the order the malfunction is detected.
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-7
Warm-up Cycle
A warm-up cycle means sufficient vehicle operation such that the
coolant temperature has risen by at least 22C (40F) from engine
starting and reaches a minimum temperature of 70C (160F).
Driving Cycle
A “Driving Cycle” consists of engine startup and engine shutoff.
2 Driving Cycle Detection Logic
The malfunction detected in the first driving cycle is stored in ECM
(PCM) memory (in the form of pending DTC and freeze frame data)
but the malfunction indicator lamp does not light at this time. It lights
up at the second detection of same malfunction also in the next driv-
ing cycle.
Pending DTC
Pending DTC means a DTC detected and stored temporarily at 1
driving cycle of the DTC which is detected in the 2 driving cycle
detection logic.
Freeze Frame Data
ECM (PCM) stores the engine and driving conditions (in the from
of data as shown at the left) at the moment of the detection of a mal-
function in its memory. This data is called “Freeze frame data”.
Therefore, it is possible to know engine and driving conditions (e.g.,
whether the engine was warm or not, where the vehicle was running
or stopped, where air / fuel mixture was lean or rich) when a mal-
function was detected by checking the freeze frame data. Also,
ECM (PCM) has a function to store each freeze frame data for three
different malfunctions in the order as the malfunction is detected.
Utilizing this function, it is possible to know the order of malfunctions
that have been detected. Its use is helpful when rechecking or diag-
nosing a trouble.
Priority of freeze frame data:
ECM (PCM) has 4 frames where the freeze frame data can be
stored. The first frame stores the freeze frame data of the malfunc-
tion which was detected first. However, the freeze frame data
stored in this frame is updated according to the priority described
below. (If malfunction as described in the upper square “1” below
is detected while the freeze frame data in the lower square “2” has
been stored, the freeze frame data “2” will be updated by the freeze
frame data “1”.)
PRIORITY
FREEZE FRAME DATA IN FRAME 1
1
Freeze frame data at initial detection of malfunction
among misfire detected (P0300-P0304), fuel
system too lean (P0171) and fuel system too rich
(P0172)
2Freeze frame data when a malfunction other than
those in “1” above is detected
6-1-12 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
CUSTOMER PROBLEM INSPECTION FORM (EXAMPLE)
User name:Model:VIN:
Date of issue:Date of Reg.Date of problem:Mileage:
PROBLEM SYMPTOMS
Difficult Starting
No cranking
No initial combustion
No combustion
Poor starting at
(cold warm always)
OtherPoor Driveability
Hesitation on acceleration
Back fire /After fire
Lack of power
Surging
abnormal knocking
Other
Poor Idling
Poor fast idle
Abnormal idling speed
(High Low) ( r / min.)
Unstable
Hunting ( r / min. to r / min.)
OtherEngine Stall when
Immediately after start
Accel. pedal is depressed
Accel. pedal is released
Load is applied
A/C Electric load P/S
Other
Other
OTHERS:
VEHICLE / ENVIRONMENTAL CONDITION WHEN PROBLEM OCCURS
Environmental Condition
Weather
Temperature
Frequency
RoadFair Cloudy Rain Snow Always Other
Hot Warm Cool Cold (F/C) Always
Always Sometimes ( times/ day, month) Only once Under certain condition
Urban Suburb Highway Mountainous (Uphill Downhill) Tarmacadam Gravel
Other
Vehicle Condition
Engine
conditionCold Warming up phase Warmed up Always Other at starting
Immediately after start Racing without load Engine speed ( r / min)
Vehicle
conditionDuring driving: Constant speed Accelerating Decelerating
Right hand corner Left hand corner When shifting (Lever position ) At stop
Vehicle speed when problem occurs ( km/h, Mile / h) Other
Malfunction indicator
lamp conditionAlways ON Sometimes ON Always OFF Good condition
Diagnostic troubleFirst check:No code Malfunction code ( )g
codeSecond check:No code Malfunction code ( )
NOTE:
The above form is a standard sample. It should be modified according to conditions characteristic of each
market.
6-1-14 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
DIAGNOSTIC TROUBLE CODE (DTC)
CLEARANCE
[Using SUZUKI scan tool]
1) Connect SUZUKI scan tool (Tech-1) to data link connector in the
same manner as when making this connection for DTC check.
2) Turn ignition switch ON.
3) Erase DTC and pending DTC according to instructions dis-
played on scan tool. Refer to scan tool operator’s manual for fur-
ther details.
4) After completing the clearance, turn ignition switch off and dis-
connect scan tool from data link connector.
NOTE:
DTC and freeze frame data stored in ECM (PCM) memory
are also cleared in following cases. Be careful not to clear
them before keeping their record.
When power to ECM (PCM) is cut off (by disconnecting
battery cable, removing fuse or disconnecting ECM
(PCM) connectors)
When the same malfunction (DTC) is not detected again
during 40 engine warm-up cycles.
[Not using SUZUKI scan tool]
1) Turn the ignition switch OFF position.
2) Disconnect battery negative cable for specified time below to
erase diagnostic trouble code stored in ECM (PCM) memory
and reconnect it.
Time required to erase DTC:
Ambient
temperatureTime to cut power
to ECM (PCM)
Over 0C (32F)30 sec. or longer
Under 0C (32F)
Not specifiable.
Select a place with higher
than 0C (32F) temperature.
6-1-18 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
FAIL-SAFE TABLE
When any of the following DTCs is detected, ECM (PCM) enters fail-safe mode as long as malfunction continues
to exist but that mode is canceled when ECM (PCM) detects normal condition after that.
DTC NO.
DETECTED ITEMFAIL-SAFE OPERATION
P0105Manifold absolute pressure circuit
malfunction
ECM (PCM) uses value determined by throttle
opening and engine speed.
ECM (PCM) stops EGR, EVAP purge and idle air
control.
P0110Intake air temp. circuit malfunctionECM (PCM) controls actuators assuming that
intake air temperature is 20C (68F).
P0115Engine coolant temp. circuit malfunctionECM (PCM) controls actuators assuming that
engine coolant temperature is 80C (176F).
P0120Throttle position circuit malfunctionECM (PCM) controls actuators assuming that
throttle opening is 20.
P0340Camshaft position sensor circuit
malfunctionECM (PCM) controls injection system sequential
injection to synchronous injection.
P0500Vehicle speed sensor malfunctionECM (PCM) stops idle air control.
P1450Barometric pressure sensor low /
high inputECM (PCM) controls actuators assuming that
barometric pressure is 100 kPa (760 mmHg).