Oscilloscope Waveforms
Crankshaft
timing belt pulleyCKP
sensor
2V/Div.
5ms/Div.
Waveforms at specified idle speed
6-72 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0335 CRANKSHAFT POSITION (CKP) SENSOR CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
No CKP sensor signal during 1 revolution of
camshaft.CKP sensor circuit open or short.
Crankshaft timing belt pulley teeth damaged.
CKP sensor malfunction, foreign material being
attached or improper installation.
ECM (PCM) malfunction.
Reference
Connect oscilloscope between terminals C01-3 (+) and C01-11 (–) of ECM (PCM) connector connected to ECM
(PCM) and check CKP sensor signal.
DTC CONFIRMATION PROCEDURE
1) Clear DTC, start engine and keep it at idle for 1 min.
2) Select “DTC” mode on scan tool and check DTC.
Display of fuel injection signal using oscilloscope
1. CMP sensor signal
2. Fuel injector signal
3. Fuel injection time
2V/Div.
20V/Div.1
2
10ms/Div
Waveforms at specified idle speed 3 Sensor rotor
in distributorCamshaft
position sensor
6-74 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0340 CAMSHAFT POSITION (CMP) SENSOR CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
No CMP sensor signal for 2 seconds at engine
cranking (CKP sensor signal is inputted).CMP sensor circuit open or short.
Signal rotor teeth damaged.
CMP sensor malfunction, foreign material being
attached or improper installation.
ECM (PCM) malfunction.
Reference
Connect oscilloscope between terminals C01-2 and C01-10 of ECM (PCM) connector connected to ECM (PCM)
and check CMP sensor signal.
DTC CONFIRMATION PROCEDURE
1) Clear DTC.
2) Start engine and keep it at idle for 1 min.
3) Select “DTC” mode on scan tool and check DTC.
6-92 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Fig. 1 for Step 1
DTC P1450 BAROMETRIC PRESSURE SENSOR LOW / HIGH INPUT
DTC P1451 BAROMETRIC PRESSURE SENSOR PERFORMANCE PROBLEM
WIRING DIAGRAM / CIRCUIT DESCRIPTION
Barometric pressure sensor is installed in ECM (PCM).
DTC DETECTING CONDITION
POSSIBLE CAUSE
DTC P1450:
Barometric pressure: 136 kPa 1025 mmHg or higher, or
33 kPa 250 mmHg or lowerECM (PCM) (barometric pressure sensor)
malfunction
DTC P1451:
Vehicle stopped.
Engine cranking.
Difference between barometric pressure and intake
manifold absolute pressure is 26 kPa, 200 mmHg or more.
2 driving cycle detection logic, monitoring once / 1 driving.Manifold absolute pressure sensor and its
circuit malfunction
ECM (PCM) (barometric pressure sensor)
malfunction
DTC CONFIRMATION PROCEDURE
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Turn ignition switch ON for 2 sec., crank engine for 2 sec. and run it at idle for 1 min.
4) Check pending DTC in “ON BOARD TEST” or “PENDING DTC” mode and DTC in “DTC” mode.
INSPECTION
DTC P1450:
Substitute a known-good ECM (PCM) and recheck.
DTC P1451:
NOTE:
Note that atmospheric pressure varies depending on weather conditions as well as altitude.
Take that into consideration when performing these check.
STEP
ACTIONYESNO
11) Connect scan tool to DLC with ignition switch
OFF.
2) Turn ignition switch ON and select “DATA
LIST” mode on scan tool.
3) Check manifold absolute pressure. See Fig. 1.
Is it barometric pressure (approx. 100 kPa,
760 mmHg) at sea level?Substitute a known-
good ECM (PCM) and
recheck.Check intake manifold
pressure sensor and its
circuit.
Go to P0105 DIAG.
FLOW TABLE.
Main
fuse
M / T vehicle
Ignition
switch
(starter
switch)Starter
A / T vehicle
Main
fuse
Ignition
switch
(starter
switch)Transmission
range sensor (switch)
StarterPCM
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-93
DTC P1500 ENGINE STARTER SIGNAL CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
High voltage at terminal C01-16 for 3 min. after engine
start.
Low voltage at terminal C01-16 during starting engine.
2 driving cycle detection logic, continuous monitoring.“B/Y” circuit open
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON, crank engine and run it at idle for 3 min.
3) Check pending DTC in “ON BOARD TEST” or “PENDING DTC” mode and DTC in “DTC” mode.
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check for voltage at terminal C01-16 of ECM
(PCM) connector connected, under following
condition.
While engine cranking : 6 – 10 V
After starting engine : 0 V
Is voltage as specified?Poor C01-16
connection or
intermittent trouble.
Check for intermittent
referring to “Intermittent
and Poor Connection”
in Section 0A.
If wire and connections
are OK, substitute a
known-good ECM (PCM)
and recheck.“B/Y” circuit open.
6-1-16 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
DTC
NO.DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0335Crankshaft position sensor
circuit malfunctionNo signal for 2 sec. During engine cranking1 driving
cycle
P0340Camshaft position sensor circuit
malfunctionNo signal during engine running1 driving
cycle
P0400Exhaust gas recirculation
flow malfunction detectedExcessive or insufficient EGR flow2 driving
cycles
P0420Catalyst system efficiency below
threshold
Output waveforms of HO2S-1 and HO2S-2 are
similar.
(Time from output voltage change of HO2S-1 to that
of HO2S-2 is shorter than specification.)
2 driving
cycles
P0443Purge control valve circuit
malfunctionPurge control valve circuit is open or shorted to
ground2 driving
cycles
P0480Radiator fan control circuit
malfunctionRadiator cooling fan relay terminal voltage is low
when cooling temp. is lower than specification2 driving
cycles
P0500Vehicle speed sensor
malfunctionNo signal while running in “D” range or during fuel cut
at decelerating2 driving
cycles
P0505Idle control system malfunctionNo closed signal to IAC valve is detected2 driving
cycles
P0601Internal control module memory
check sum errorData write error (or check sum error) when written
into ECM (PCM)1 driving
cycle
P1450Barometric pressure sensor
circuit malfunctionBarometric pressure is lower or higher than
specification. (or sensor malfunction)1 driving
cycle
P1451Barometric pressure sensor
performance problem
Difference between manifold absolute pressure
(MAP sensor value) and barometric pressure
(barometric pressure sensor value) is larger than
specification during cranking.
2 driving
cycles
P1500Starter signal circuit malfunctionStarter signal is not inputted from engine cranking till
its start and after or it is always inputted2 driving
cycles
P1510ECM (PCM) backup power
source malfunctionNo backup power after starting engine1 driving
cycle
6-1-22 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
ENGINE DIAGNOSIS TABLE
Perform troubleshooting referring to following table when ECM (PCM) has detected no DTC and no abnormality
has been found in visual inspection and engine basic inspection previously.
Condition
Possible CauseReferring Item
Hard Starting
(Engine cranks OK)Ignition system out of order
Faulty spark plug
Leaky high-tension cord
Loose connection or disconnection of high-
tension cords or lead wires
Faulty ignition coil
Fuel system out of order
Dirty or clogged fuel hose or pipe
Malfunctioning fuel pump
Air inhaling from intake manifold gasket or
throttle body gasket
Engine and emission control system out of
order
Faulty idle air control system
Faulty ECT sensor or MAP sensor
Faulty ECM (PCM)
Low compression
Poor spark plug tightening or faulty gasket
Compression leak from valve seat
Sticky valve stem
Weak or damaged valve springs
Compression leak at cylinder head gasket
Sticking or damaged piston ring
Worn piston, ring or cylinder
Others
Malfunctioning PCV valve
Spark plugs in Section 6F1
High-tension cords in Section 6F1
High-tension cords in Section 6F1
Ignition coil in Section 6F1
Diagnostic Flow Table B-3
Diagnostic Flow Table B-3
Diagnostic Flow Table B-4
ECT sensor or MAP sensor in
Section 6E2
Compression check in Section
6A1
Spark plugs in Section 6F1
Valves inspection in Section 6A1
Valves inspection in Section 6A1
Valve springs inspection in
Section 6A1
Cylinder head inspection in
Section 6A1
Cylinders, pistons and piston rings
inspection in Section 6A1
Cylinders, pistons and piston rings
inspection in Section 6A1
PCV system in Section 6E2
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-31
SCAN TOOL DATA DEFINITIONS
FUEL SYSTEM (FUEL SYSTEM STATUS)
Air / fuel ratio feedback loop status displayed as either
open or closed loop. Open indicates that ECM (PCM)
ignores feedback from the exhaust oxygen sensor.
Closed indicates final injection duration is corrected
for oxygen sensor feedback.
CALC LOAD (CALCULATED LOAD VALUE, %)
Engine load displayed as a percentage of maximum
possible load. Value is calculated mathematically us-
ing the formula: actual (current) intake air volume
maximum possible intake air volume x 100%.
COOLANT TEMP.
(ENGINE COOLANT TEMPERATURE, C, F)
It is detected by engine coolant temp. sensor
SHORT FT B1 (SHORT TERM FUEL TRIM, %)
Short term fuel trim value represents short term
corrections to the air / fuel mixture computation. A val-
ue of 0 indicates no correction, a value greater than
0 means an enrichment correction, and a value less
than 0 implies an enleanment correction.
LONG FT B1 (LONG TERM FUEL TRIM, %)
Long term fuel trim Value represents long term correc-
tions to the air / fuel mixture computation. A value of 0
indicates no correction, a value greater than 0 means
an enrichment correction, and a value less than 0 im-
plies an enleanment correction.
MAP (INTAKE MANIFOLD ABSOLUTE
PRESSURE, kPa, inHg)
It is detected by manifold absolute pressure sensor and
used (among other things) to compute engine load.
ENGINE SPEED (rpm)
It is computed by reference pulses from crankshaft
position sensor.
VEHICLE SPEED (km / h, MPH)
It is computed based on pulse signals from vehicle
speed sensor.
IGNITION ADVANCE
(IGNITION TIMING ADVANCE FOR NO.1
CYLINDER, )
Ignition timing of NO.1 cylinder is commanded by
ECM (PCM). The actual ignition timing should be
checked by using the timing light.
INTAKE AIR TEMP. (C, F)
It is detected by intake air temp. sensor and used to
determine the amount of air passing into the intake
manifold as air density varies with temperature.
MAF (MASS AIR FLOW RATE, gm / s, lb / min)
It represents total mass of air entering intake manifold
which is computed based on signals from MAP sen-
sor, IAT sensor, TP sensor, etc.
THROTTLE POS
(ABSOLUTE THROTTLE POSITION, %)
When throttle position sensor is fully closed position,
throttle opening is indicated as 0% and 100% full open
position.
OXYGEN SENSOR B1 S1
(HEATED OXYGEN SENSOR-1, V)
It indicates output voltage of HO2S-1 installed on ex-
haust manifold (pre-catalyst).
OXYGEN SENSOR B1 S2
(HEATED OXYGEN SENSOR-2, V)
It indicates output voltage of HO2S-2 installed on ex-
haust pipe (post-catalyst). It is used to detect catalyst
deterioration.
DESIRED IDLE (DESIRED IDLE SPEED, rpm)
The Desired Idle Speed is an ECM (PCM) internal pa-
rameter which indicates the ECM (PCM) requested
idle. If the engine is not running, this number is not valid.
TP SENSOR VOLT (THROTTLE POSITION
SENSOR OUTPUT VOLTAGE, V)
The Throttle Position Sensor reading provides throttle
valve opening information in the form of voltage.
INJ PULSE WIDTH
(FUEL INJECTION PULSE WIDTH, msec.)
This parameter indicates time of the injector drive
(valve opening) pulse which is output from ECM
(PCM) (but injector drive time of NO.1 cylinder for
multiport fuel injection).
IAC FLOW DUTY (IDLE AIR (SPEED) CONTROL
DUTY, %)
This parameter indicates current flow time rate within
a certain set cycle of IAC valve (valve opening rate)
which controls the amount of bypass air (idle speed).
TOTAL FUEL TRIM (%)
The value of Total Fuel Trim is obtained by putting val-
ues of short Term Fuel Trim and Long Term Fuel Trim
together. This value indicates how much correction is
necessary to keep the air / fuel mixture stoichiomet-
rical.
BATTERY VOLTAGE (V)
This parameter indicates battery positive voltage in-
putted from main relay to ECM (PCM).
6-1-34 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
CONNECTOR “C01”
TERMINAL
NO.CIRCUITNORMAL
VOLTAGECONDITION
1Ground——
2Ground——
3Ground——
4EVAP canister purge valve10 – 14 VIgnition switch ON
Indication
deflection
5Power steering switch
deflection
repeated
0 V and
Ignition switch ON
0 V and
10 – 14 V
6Idle air control valve0 – 13 VAt specified idle speed after engine warmed
up
7Heater of HO2S-110 – 14 VIgnition switch ON
8Fuel injector NO.410 – 14 VIgnition switch ON
9Fuel injector NO.110 – 14 VIgnition switch ON
10Sensor ground——
11Camshaft position sensor0 – 0.8 V
and 4 – 6 VIgnition switch ON
12Blank——
13Heater oxygen sensor-1Refer to DTC P0130 diag. flow table
14Engine coolant temp. sensor0.55 – 0.95 VIgnition switch ON
Engine coolant temp.: 80C (176F)
15Intake air temp. sensor2.0 – 2.7 VIgnition switch ON
Intake air temp.: 20C (68F)
16Blank——
17Electric load signal (+)
0 – 1 VIgnition switch ON
Small light and rear defogger OFF
17Electric load signal (+)
10 – 14 VIgnition switch ON
Small light and rear defogger ON
18Blank——
19Ignition coil #2——
20Ignition coil #1——
21Fuel injector NO.210 – 14 VIgnition switch ON
22Power source for sensor4.75 – 5.25 VIgnition switch ON
23Crankshaft position sensor (+)——
24Crankshaft position sensor (–)——
25Blank——
26Manifold absolute pressure
sensor3.3 – 4.0 VIgnition switch ON
Barometric pressure: 100 kPa (760 mmHg)
27Blank——
28Immobilizer indicator lamp0 – 2 VIgnition switch ON28Immobilizer indicator lamp10 – 14 VWhen engine running
29Blank——
30Blank——
31Fuel injector NO.310 – 14 VIgnition switch ON