19FUEL SYSTEM
12
REPAIR FUEL TANK
Service repair no - 19.55.01
Remove
1.Drain fuel tank.See Adjustment.
2.Raise rear of vehicle.
WARNING: Support on safety stands.
Vehicles fitted with tow bar
3.Remove 2 bolts securing support bars to drop
plate.
4.Loosen 2 nuts securing support bars to chassis.All Vehicles
5.Remove 2 nuts securing fuel tank support to rear
chassis member.
6.Remove 2 bolts securing fuel tank support plate
to chassis member.
7.Release clip securing filler hose and release
hose from filler neck.
ProCarManuals.com
FUEL SYSTEM
13
REPAIR
8.Disconnect vent hose from clips on rear chassis
member.
9.Support weight of fuel tank.
10.With assistance, lower fuel tank and remove
support plate.
11.Disconnect multiplug from fuel pump.
12.Noting their fitted position, disconnect 4 fuel
hoses from fuel pump.
13.Release clip and disconnect filler neck breather
from fuel tank.
14.With assistance, lower and remove fuel tank.
15.Remove 2 scrivits securing heat shield remove
heat shield.
16.Release clip securing breather hose to tank and
remove hose.
17.UsingLRT-19-009remove fuel pump locking
ring.
18.Remove fuel pump and discard sealing ring.
ProCarManuals.com
19FUEL SYSTEM
14
REPAIR Refit
19.Clean fuel pump and mating face.
20.Fit new fuel pump sealing ring.
21.Fit fuel pump and secure with locking ring.
22.Fit breather hose and secure clip.
23.Position heat shield and secure with scrivits.
24.With assistance position fuel tank and support
plate.
25.Connect fuel hoses and multiplug to fuel pump.
26.Connect filler neck breather and secure clip.
27.Position vent hose and secure to chassis clips.
28.Raise fuel tank to its fitted position.
29.Fit nuts and bolts securing fuel tank and tighten
to25 Nm (18 lbf.ft).
30.Connect filler hose and secure clip.
Vehicles fitted with tow bar
31.Position support bar and tighten nuts and bolts.
32.Reconnect battery negative lead.
33.Fit battery cover.NECK - FUEL TANK FILLER
Service repair no - 19.55.07
Remove
1.Drain fuel tank.See Adjustment.
2.Loosen clip securing breather hose to fuel filler
neck and release hose.
3.Loosen clip securing fuel filler hose to neck and
release hose.
4.Remove screw and release earth lead from filler
neck.
5.Remove grommet securing filler neck to body.
6.Remove filler neck from body.
Refit
7.Fit filler neck to body.
8.Coat rubber grommet with soap solution.
9.Fit rubber grommet securing filler neck to body.
10.Connect earth lead and tighten screw.
11.Connect filler hose to neck and tighten clip.
12.Fit breather hose to filler neck and secure with
clip.
ProCarManuals.com
FUEL SYSTEM
15
REPAIR
ProCarManuals.com
COOLING SYSTEM
3
DESCRIPTION AND OPERATION
NOTE: Inset A shows differences for Pre
EU3 models
1.Pressure cap
2.Overflow pipe
3.Heater return hose
4.Heater matrix
5.Heater inlet hose
6.Oil cooler return pipe - EU3 models
7.Connecting hose
8.Oil cooler housing assembly
9.Heater inlet pipe
10.Connecting hose
11.Outlet housing
12.Engine Coolant Temperature (ECT) sensor
13.Bleed screw
14.Radiator top hose
15.Radiator - upper
16.Intercooler
17.Gearbox oil cooler
18.Radiator - lower
19.Viscous fan
20.Drain plug
21.Connecting hose
22.Fuel cooler feed hose
23.Radiator bottom hose
24.Thermostat housing
25.Connecting hose
26.Coolant pump feed pipe
27.Coolant by-pass pipe
28.Radiator bleed pipe
29.Connecting hose
30.Coolant pump
31.Fuel cooler
32.Heater/expansion tank return hose
33.Expansion tank
34.EGR Cooler - EU3 models
35.Connecting hose - EU3 models
36.Connecting hose - EU3 models
37.Hose - EGR Cooler to oil cooler return pipe -
EU3 models
38.Radiator lower feed hose - Pre EU3 models
39.Oil cooler return pipe - Pre EU3 models
ProCarManuals.com
COOLING SYSTEM
7
DESCRIPTION AND OPERATION Radiator
The 44 row radiator is located at the front of the vehicle in the engine compartment. The cross flow type radiator is
manufactured from aluminium with moulded plastic end tanks interconnected with tubes. The bottom four rows are
separate from the upper radiator and form the lower radiator for the fuel cooler. Aluminium fins are located
between the tubes and conduct heat from the hot coolant flowing through the tubes, reducing the coolant
temperature as it flows through the radiator. Air intake from the front of the vehicle when moving carries the heat
away from the fins. When the vehicle is stationary, the viscous fan draws air through the radiator fins to prevent
the engine from overheating.
Two connections at the top of the radiator provide for the attachment of the top hose from the outlet housing and
bleed pipe to the expansion tank. Three connections at the bottom of the radiator allow for the attachment of the
bottom hose to the thermostat housing and the return hose from the oil cooler and the feed hose to the fuel cooler.
The bottom four rows of the lower radiator are dedicated to the fuel cooler. The upper of the two connections at
the bottom of the radiator receives coolant from the oil cooler. This is fed through the four rows of the lower
radiator in a dual pass and emerges at the lower connection. The dual pass lowers the coolant temperature by up
to 24°C before being passed to the fuel cooler. Two smaller radiators are located in front of the cooling radiator.
The upper radiator is the intercooler for the air intake system and the lower radiator provides cooling of the
gearbox oil.
Pipes and Hoses
The coolant circuit comprises flexible hoses and metal formed pipes which direct the coolant into and out of the
engine, radiator and heater matrix. Plastic pipes are used for the bleed and overflow pipes to the expansion tank.
A bleed screw is installed in the radiator top hose and is used to bleed air during system filling. A drain plug to
drain the heater and cylinder block circuit of coolant is located on the underside of the coolant pump feed pipe.
Oil Cooler
The oil cooler is located on the left hand side of the engine block behind the oil centrifuge and oil filter. Oil from the
oil pump is passed through a heat exchanger which is surrounded by coolant in a housing on the side of the
engine.
Full water pump flow is directed along the cooler housing which also distributes the flow evenly along the block
into three core holes for cylinder cooling. This cools the engine oil before it is passed into the engine. A small
percentage of the coolant from the oil cooler passes into a metal pipe behind the engine. It then flows into the
lower radiator via a hose.
Fuel Cooler
The fuel cooler is located on the right hand side of the engine and is attached to the inlet manifold. The cooler is
cylindrical in design and has a coolant feed connection at its forward end. A’T’connection at the rear of the cooler
provides a connection for the coolant return from the heater matrix and coolant return from the fuel cooler.
The’T’connection houses a thermostat which opens at approximately 82°C. This prevents the cooler operating in
cold climates. Two quick release couplings on the cooler allow for the connection of the fuel feed from the
pressure regulator and return to the fuel tank. A counter flow system is used within the cooler.
Fuel flows around a coolant jacket within the cooler and flows from the back to the front of the cooler. As the hot
fuel cools travelling slowly forwards it meets progressively colder coolant travelling in the opposite direction
maintaining a differential cooling effect.
ProCarManuals.com
26COOLING SYSTEM
10
DESCRIPTION AND OPERATION At low radiator temperatures, the fan operation is not required and the bi-metallic coil keeps the valve closed,
separating the silicone fluid from the drive plate. This allows the fan to’freewheel’reducing the load on the engine,
improving fuel consumption and reducing noise generated by the rotation of the fan.
When the radiator temperature increases, the bi-metallic coil reacts and moves the valve, allowing silicone fluid to
flow into the fluid chamber. The resistance to shear of the silicone fluid creates drag on the drive plate and
provides drive to the body and the fan blades.
ProCarManuals.com
COOLING SYSTEM
11
DESCRIPTION AND OPERATION OPERATION
Coolant Flow - Engine Warm Up
During warm up the coolant pump moves fluid through the cylinder block and it emerges from the outlet housing.
From the outlet housing, the warm coolant flow is prevented from flowing through the upper and lower radiators
because both thermostats are closed. The coolant is directed into the heater circuit.
Some coolant from the by-pass pipe can pass through small sensing holes in the flow valve. The warm coolant
enters a tube in the thermostat housing and surrounds 90% of the thermostat sensitive area. Cold coolant
returning from the radiator bottom hose conducts through 10% of the thermostat sensitive area. In cold ambient
temperatures the engine temperature can be raised by up to 10°C (50°F) to compensate for the heat loss of the
10% exposure to the cold coolant return from the radiator bottom hose.
At engine speeds below 1500 rev/min, the by-pass valve is closed only allowing the small flow through the sensing
holes. As the engine speed increases above 1500 rev/min, the greater flow and pressure from pump overcomes
the light spring and opens the by-pass flow valve. The flow valve opens to meet the engine’s cooling needs at
higher engine speeds and prevents excess pressure in the cooling system. With both thermostats closed,
maximum flow is directed through the heater circuit.
The heater matrix acts as a heat exchanger reducing the coolant temperature as it passes through the matrix.
Coolant emerges from the heater matrix and flows to the fuel cooler’T’connection via the heater return hose.
From the fuel cooler the coolant is directed into the coolant pump feed pipe and recirculated around the heater
circuit. In this condition the cooling system is operating at maximum heater performance.
Coolant Flow - Engine Hot
As the coolant temperature increases the main thermostat opens. This allows some coolant from the outlet
housing to flow through the top hose and into the radiator to be cooled. The hot coolant flows from the left tank in
the radiator, along the tubes to the right tank. The air flowing through the fins between the tubes cools the coolant
as it passes through the radiator.
A controlled flow of the lower temperature coolant is drawn by the pump and blended with hot coolant from the
by-pass and the heater return pipes in the pump feed pipe. The pump then passes this coolant, via the cylinder
block, to the oil cooler housing, cooling the engine oil before entering the block to cool the cylinders.
When the fuel temperature increases, the heat from the fuel conducts through the fuel cooler’T’connection and
causes the fuel thermostat to open. Coolant from the cylinder block flows through the oil cooler and via a pipe and
hose enters the lower radiator. The lower temperature coolant from the oil cooler housing is subjected to an
additional two passes through the lower radiator to further reduce the coolant temperature. From the lower radiator
the coolant flows , via a hose, to the fuel cooler.
As the hot fuel cools, travelling slowly forwards through the cooler, it meets the progressively colder coolant
travelling in the opposite direction from the lower radiator.
ProCarManuals.com