These 3 orifices are opened and closed by electric solenoids. The
solenoids are, in turn, controlled by the Electronic Control Module
(ECM). When a solenoid is energized, the armature with attached shaft
and swivel pintle is lifted, opening the orifice. See Fig. 11.
The ECM uses inputs from the Coolant Temperature Sensor
(CTS), Throttle Position Sensor (TPS) and Mass Airflow (MAF) senso\
rs
to control the EGR orifices to make 7 different combinations for
precise EGR flow control. At idle, the EGR valve allows a very small
amount of exhaust gas to enter the intake manifold. This EGR valve
normally operates above idle speed during warm engine operation.
Verify EGR valve is present and not modified or purposely
damaged. Ensure thermal vacuum switches, pressure transducers, speed
switches, etc., (if applicable) are not by-passed or modified. Ensure
vacuum hose(s) to EGR valve is not plugged. Ensure electrical
connector to EGR valve is not disconnected.
Fig. 11: Typical Digital EGR Valve
Courtesy of General Motors Corp.
Integrated Electronic EGR Valve
This type functions similar to a ported EGR valve with a
Engine pre-oiling can be done using pressure oiler (if
available). Connect pressure oiler to cylinder block oil passage
such as oil pressure sending unit. Operate pressure oiler long enough
to ensure correct amount of oil has filled crankcase. Check oil level
while pre-oiling.
If pressure oiler is not available, disconnect ignition
system. Remove oil pressure sending unit and replace with oil pressure
test gauge. Using starter motor, rotate engine starter until gauge
shows normal oil pressure for several seconds. DO NOT crank engine
for more than 30 seconds to avoid starter motor damage.
Ensure oil pressure has reached the most distant point from
the oil pump. Reinstall oil pressure sending unit. Reconnect ignition
system.
INITIAL START-UP
Start the engine and operate engine at low speed while
checking for coolant, fuel and oil leaks. Stop engine. Recheck coolant
and oil level. Adjust if necessary.
CAMSHAFT
Break-in procedure is required when a new or reground
camshaft has been installed. Operate and maintain engine speed between
1500-2500 RPM for approximately 30 minutes. Procedure may vary due to
manufacturers recommendations.
PISTON RINGS
Piston rings require a break-in procedure to ensure seating
of rings to cylinder walls. Serious damage may occur to rings if
correct procedures are not followed.
Extremely high piston ring temperatures are produced obtained
during break-in process. If rings are exposed to excessively high RPM
or high cylinder pressures, ring damage can occur. Follow piston ring
manufacturer's recommended break-in procedure.
FINAL ADJUSTMENTS
Check or adjust ignition timing and dwell (if applicable).
Adjust valves (if necessary). Adjust carburetion or injection idle
speed and mixture. Retighten cylinder heads (if required). If
cylinder head or block is aluminum, retighten bolts when engine is
cold. Follow the engine manufacturer's recommended break-in procedure
and maintenance schedule for new engines.
NOTE: Some manufacturer's require that head bolts be retightened
after specified amount of operation. This must be done to
prevent head gasket failure.
CLUTCH PEDAL POSITION SWITCHES
COLD START INJECTORS
CONNECTORS
COOLANT
COOLANT RECOVERY TANKS
COOLING FAN MOTOR MODULES
COOLING FAN MOTOR RELAYS AND MODULES
COOLING FAN MOTOR RESISTORS
COOLING FAN MOTOR SENSORS AND SWITCHES
COOLING FAN MOTOR SWITCHES
COOLING FAN MOTORS
CRANKSHAFT POSITION SENSORS
DECEL VALVES
DEFLECTORS
DIP STICKS AND TUBES
DIP STICK TUBES
DISTRIBUTOR ADVANCES AND RETARDERS (MECHANICAL AND VACUUM)
DISTRIBUTOR BOOTS AND SHIELDS
DISTRIBUTOR CAPS
DISTRIBUTOR RETARDERS (MECHANICAL AND VACUUM)
DISTRIBUTOR ROTORS
DISTRIBUTOR SHIELDS
DISTRIBUTORS
EARLY FUEL EVAPORATION VALVES (HEAT RISER ASSEMBLIES)
EGR COOLERS
EGR EXHAUST MANIFOLD PASSAGES
EGR INTAKE AND EXHAUST MANIFOLD PASSAGES
EGR PLATES AND COOLERS
ELECTRONIC SPARK CONTROL MODULES
ELECTRONIC TRANSMISSION CONTROL DEVICES
ELECTRONIC TRANSMISSION FEEDBACK DEVICES
ENGINE COOLANT TEMPERATURE SENSORS
ENGINE COOLING SYSTEMS
ENGINE COVERS (OIL PAN, VALVE COVER, TIMING COVER)
ENGINE OIL
ENGINE OIL CANISTERS
ENGINE OIL COOLERS (EXTERNAL)
ENGINE OIL DRAIN PLUGS AND GASKETS
ENGINE OIL FILTERS AND CANISTERS
ENGINE OIL GASKETS
ENGINE OIL PRESSURE GAUGES (MECHANICAL)
EVAPORATIVE EMISSION (EVAP) CANISTER FILTERS
EVAPORATIVE EMISSION (EVAP) CANISTER PURGE DEVICES
EVAPORATIVE EMISSION (EVAP) CANISTERS
EVAPORATIVE EMISSION (EVAP) FEEDBACK DEVICES
EXHAUST GAS RECIRCULATION DEVICES
EXHAUST GAS RECIRCULATION FEEDBACK DEVICES
EXPANSION PLUGS
FAN CONTROL SENSORS
FUEL
FUEL ACCUMULATORS AND DAMPERS
FUEL AND COLD START INJECTORS
FUEL DAMPERS
FUEL DELIVERY CHECK VALVES
FUEL DISTRIBUTORS (BOSCH CIS)
FUEL FILLER NECKS AND RESTRICTORS
FUEL FILTERS
FUEL INJECTORS
FUEL LEVEL SENDERS7
FUEL PRESSURE REGULATORS
FUEL PUMPS (IN-TANK AND EXTERNAL, ELECTRICAL OR MECHANICAL)
FUEL RAILS
FUEL RESTRICTORS
fuel, metal particles, or water. Require repair or
replacement.
(3) - Inoperative includes intermittent operation or out of
OEM specification. Some components may be serviceable;
check for accepted cleaning procedure.
\
\
\
\
\
\
\
ENGINE COOLANT TEMPERATURE SENSORS
ENGINE COOLANT TEMPERATURE SENSOR INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware
threads damaged ........ A ... Require repair or replacement
of hardware.
Attaching hardware
threads stripped
(threads missing) ...... A ... Require repair or replacement
of hardware.
Connector broken ........ A .. Require repair or replacement.
Connector (Weatherpack
type) leaking .......... A .. Require repair or replacement.
Connector melted ........ A ........... ( 1) Require repair or
replacement.
Connector missing ....... C ............ Require replacement.
Contaminated ............ A ........... ( 2) Require repair or
replacement.
Inoperative ............. B ........... ( 3) Require repair or
replacement. Further
inspection required.
Leaking ................. A .. Require repair or replacement.
Missing ................. C ............ Require replacement.
Resistance out of
specification .......... B .. Require repair or replacement.
Restricted, affecting
performance ............ A .. Require repair or replacement.
Terminal broken ......... A .. Require repair or replacement.
Terminal burned, affecting
performance ............ A ........... ( 1) Require repair or
replacement.
Terminal burned, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal corroded,
affecting performance .. A .. Require repair or replacement.
Terminal corroded, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal loose, affecting
performance ............ B .. Require repair or replacement.
Terminal loose, not
affecting performance .. 1 .. Suggest repair or replacement.
Threads damaged ......... A .. Require repair or replacement.
Threads stripped (threads
missing) ............... A ............ Require replacement.
Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
Further inspection required.
Canister attaching
hardware broken ........ A ... Require repair or replacement
of hardware.
Canister attaching
hardware loose ......... A ................. Require repair.
Canister attaching
hardware missing ....... C ............ Require replacement.
Canister attaching
hardware not
functioning ............ A ... Require repair or replacement
of hardware.
Center tube collapsed ... A ........ (2) Require replacement.
Further inspection required.
Contaminated ............ A ...... ( 3) Require replacement of
oil and filter.
Dented .................. 2 ........ ( 4) Suggest replacement.
Further inspection required.
Leaking ................. A .. Require repair or replacement.
Maintenance intervals ... 3 ... Suggest replacement to comply
with vehicle's OEM recommended
service intervals.
( 1) - Inspect pressure relief valve.
( 2) - Inspect bypass.
( 3) - Determine cause of contamination, such as engine coolant,
fuel, metal particles, or water when changing oil. Require
repair or replacement.
( 4) - Determine cause, such as broken motor mount.
\
\
\
\
\
\
\
ENGINE OIL GASKETS
See ENGINE OIL DRAIN PLUGS AND GASKETS .
ENGINE OIL PRESSURE GAUGES (MECHANICAL)
ENGINE OIL PRESSURE GAUGE (MECHANICAL) INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Indicates out of range .. B .......... ( 1) Further inspection
required.
Inoperative ............. A .......... ( 2) Further inspection
required.
Leaking ................. A .. Require repair or replacement.
Reads inaccurately ...... 2 .. Suggest repair or replacement.
( 1) - Gauge may indicate problem with contaminated oil, level,
pressure, or temperature, or problem with gauge.
( 2) - Gauge may indicate problem with contaminated oil, level,
pressure, or temperature, or problem with gauge.
Inoperative includes intermittent operation, out of OEM
specification, or out of range. Further inspection
required to determine cause.
\
\
\
\
\
\
\
EVAPORATIVE EMISSION (EVAP) CANISTER FILTERS
EVAPORATIVE EMISSION (EVAP) CANISTER FILTER INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
of hardware.
Connector broken ........ A .. Require repair or replacement.
Connector melted ........ A ........... (1) Require repair or
replacement.
Connector missing ....... C ............ Require replacement.
Contaminated ............ A ........ ( 2) Require replacement.
Inoperative ............. A ........... ( 3) Require repair or
replacement.
Missing ................. C ............ Require replacement.
Terminal broken ......... A .. Require repair or replacement.
Terminal burned, affecting
performance ............ A ........... ( 1) Require repair or
replacement.
Terminal burned, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal corroded,
affecting performance .. A .. Require repair or replacement.
Terminal corroded, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal loose, affecting
performance ............ B .. Require repair or replacement.
Terminal loose, not
affecting performance .. 1 .. Suggest repair or replacement.
Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
( 1) - Determine cause and correct prior to repair or
replacement of part.
( 2) - Determine source of contamination, such as engine coolant,
fuel, metal particles, or water. Require repair or
replacement.
( 3) - Inoperative includes intermittent operation or out of
OEM specification.
\
\
\
\
\
\
\
INTAKE AIR TEMPERATURE SENSORS
INTAKE AIR TEMPERATURE SENSOR INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware
threads damaged ........ A ... Require repair or replacement
of hardware.
Attaching hardware
threads stripped
(threads missing) ...... A ... Require repair or replacement
of hardware.
Connector broken ........ A .. Require repair or replacement.
Connector (Weatherpack
type) leaking .......... A .. Require repair or replacement.
Connector melted ........ A ........... ( 1) Require repair or
replacement.
Connector missing ....... C ............ Require replacement.
Contaminated ............ A ........... ( 2) Require repair or
replacement.
Inoperative ............. B ........... ( 3) Require repair or
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
(1) - Determine cause and correct prior to repair or
replacement of part.
( 2) - Determine source of contamination, such as engine coolant,
fuel, metal particles, or water. Require repair or
replacement.
( 3) - Inoperative includes intermittent operation or out of
OEM specification. Some components may be serviceable;
check for accepted cleaning procedure.
\
\
\
\
\
\
\
SENSORS AND ACTUATORS
NOTE: Conditions pertaining to the sensors and actuators listed
in this section may be found under the name of the sensor
or actuator.
SENSOR ABBREVIATION TABLE
\
\
\
\
\
\
\
Sensor Abbreviation
Accelerator Pedal Position Sensor ......................... APP
Air Conditioning Cycling Switch ............................ AC
Air Conditioning Pressure Sensor ........................... ..
Air Fuel Ratio Sensor ...................................... ..
Barometric Pressure Sensor ............................... BARO
Camshaft Position Sensor .................................. CMP
Clutch Pedal Position Switch .............................. CPP
Cooling Fan Motor Sensors and Switches ..................... ..
Crankshaft Position Sensor ................................ CKP
Electronic Transmission Feedback Devices ................... ..
Engine Coolant Temperature Sensor ......................... ECT
Evaporative Emission feedback devices ...................... ..
Exhaust Gas Recirculation feedback devices ................. ..
Fan Control Sensor ......................................... FC
Intake Air Temperature Sensor ............................. IAT
Knock Sensor ............................................... KS
Manifold Absolute Pressure Sensor ......................... MAP
Mass Air Flow Sensor ...................................... MAF
O2 Sensor ................................................. O2S
Park Neutral Position Switch .............................. PNP
Power Steering Pressure Sensor ............................ PSP
Thermal Vacuum Valve ...................................... TVV
Throttle Position Sensor ............................ TP Sensor
Throttle Position Switch ................................... ..
Transmission Range Switch ........................... TR Switch
Vehicle Speed Sensor ...................................... VSS
Volume Air Flow Sensor .................................... VAF
\
\
\
\
\
\
\
ACTUATOR ABBREVIATION TABLE \
\
\
\
\
\
\
Actuator Abbreviation
Air Injection Control Solenoid ............................. ..
Electronic Transmission control devices .................... ..
Evaporative Emission Canister ............................ EVAP
Purge Device ............................................... ..
Exhaust Gas Recirculation Device .......................... EGR
Fuel Injector .............................................. ..
Idle Air Control .......................................... IAC
* Load Value (Displayed As Percent)
* Engine Coolant Temperature
* Short Term Fuel Trim (Displayed As Percent)
* Long Term Fuel Trim (Displayed As Percent)
* MAP Vacuum
* Engine RPM
* Vehicle Speed Sensor
* DTC During Data Recording
SELF-DIAGNOSTIC SYSTEM
SERVICE PRECAUTIONS
Before proceeding with diagnosis, following precautions must
be observed:
* Ensure vehicle has a fully charged battery and functional
charging system.
* Visually inspect connectors and circuit wiring being worked
on.
* DO NOT disconnect battery or PCM. This will erase any DTCs
stored in PCM.
* DO NOT cause short circuits when performing electrical tests.
This will set additional DTCs, making diagnosis of original
problem more difficult.
* DO NOT use a test light in place of a voltmeter.
* When checking for spark, ensure coil wire is NOT more than
1/4" from chassis ground. If coil wire is more than 1/4" from
chassis ground, damage to vehicle electronics and/or PCM may
result.
* DO NOT prolong testing of fuel injectors. Engine may
hydrostatically (liquid) lock.
* When a vehicle has multiple DTCs, always repair lowest number
DTC first.
VISUAL INSPECTION
Most driveability problems in the engine control system
result from faulty wiring, poor electrical connections or leaking air
and vacuum hose connections. To avoid unnecessary component testing,
perform a visual inspection before beginning self-diagnostic tests.
ENTERING ON-BOARD DIAGNOSTICS
NOTE: DO NOT skip any steps in self-diagnostic tests or incorrect
diagnosis may result. Ensure self-diagnostic test applies to
vehicle being tested.
DTCs may be retrieved by using a scan tool only. Proceed to
DTC retrieval method.
NOTE: Although other scan tools are available, Mitsubishi
recommends using Multi-Use Tester II (MUT II) scan tool.
Using Scan Tool
1) Refer to manufacturer's operation manual for instructions
in use of scan tool. Before entering on-board diagnostics, see
SERVICE PRECAUTIONS . Locate Data Link Connector (DLC) under instrument
panel, near steering column.
2) Turn ignition switch to OFF position. Connect scan tool to
DLC. Turn ignition switch to ON position. Read and record scan tool
self-diagnostic output. Proceed to TROUBLE CODE DEFINITION.