DTC P0155
Heated Oxygen Sensor (HO2S) heater circuit failure (bank 2,
sensor 1). Possible causes are: connector or harness, or HO2S.
DTC P0156
Heated Oxygen Sensor (HO2S) circuit failure (bank 2, sensor
2). Possible causes are: connector or harness, or HO2S.
DTC P0161
Heated Oxygen Sensor (HO2S) heater circuit failure (bank 2,
sensor 2). Possible causes are: connector or harness, or HO2S.
DTC P0170
Fuel trim failure (bank 1). Possible causes are: intake air
leaks, cracked exhaust manifold, faulty VAF sensor frequency, HO2S,
injector, fuel pressure, ECT, IAT or BARO pressure sensor.
DTC P0173
Fuel trim failure (bank 2). Possible causes are: intake air
leaks, cracked exhaust manifold, faulty VAF sensor frequency, HO2S,
injector, fuel pressure, ECT, IAT or BARO pressure sensor.
DTC P0201
Cylinder No. 1 injector circuit failure. Possible causes are:
connector or harness, or faulty injector.
DTC P0202
Cylinder No. 2 injector circuit failure. Possible causes are:
connector or harness, or faulty injector.
DTC P0203
Cylinder No. 3 injector circuit failure. Possible causes are:
connector or harness, or faulty injector.
DTC P0204
Cylinder No. 4 injector circuit failure. Possible causes are:
connector or harness, or faulty injector.
DTC P0205
Cylinder No. 5 injector circuit failure. Possible causes are:
connector or harness, or faulty injector.
DTC P0206
Cylinder No. 6 injector circuit failure. Possible causes are:
connector or harness, or faulty injector.
DTC P0300
Random misfire detected. Possible causes are: connector or
harness, faulty ignition coil, ignition power transistor, spark plug,
ignition circuit, injector, HO2S, compression pressure, timing belt,
air intake system, fuel pressure, or CKP sensor.
DTC P0301
Cylinder No. 1 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0302
Cylinder No. 2 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0303
Cylinder No. 3 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0304
Cylinder No. 4 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0305
Cylinder No. 5 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0306
Cylinder No. 6 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0325
Knock Sensor (KS) circuit failure. Possible causes are:
connector or harness, or faulty KS.
DTC P0335
Crankshaft Position (CKP) sensor circuit failure. Possible
causes are: connector or harness, or faulty CKP sensor.
DTC P0340
Camshaft Position (CMP) sensor circuit failure. Possible
causes are: connector or harness, or faulty CMP sensor.
DTC P0400
Exhaust Gas Recirculation (EGR) flow failure. Possible causes\
are: connector or harness, faulty EGR valve, EGR solenoid, EGR valve
control vacuum, or manifold differential pressure sensor.
DTC P0403
Exhaust Gas Recirculation (EGR) solenoid failure. Possible
causes are: connector or harness, or faulty EGR solenoid.
DTC P0420
Catalyst efficiency below threshold. Possible causes are:
cracked exhaust manifold, or faulty catalytic converter.
DTC P0421
Warm-up catalyst efficiency below threshold (bank 1).
Possible causes are: faulty exhaust manifold. If exhaust manifold is
okay, replace catalytic converter.
DTC P0431
Warm-up catalyst efficiency below threshold (bank 2).
Possible causes are: faulty exhaust manifold. If exhaust manifold is
okay, replace catalytic converter.
DTC P0442
Evaporative (EVAP) emission control system leak detected.
Possible causes are: connector or harness, faulty EVAP purge solenoid,
CLEARING DTCS
CAUTION: When battery is disconnected, vehicle computer and memory
systems may lose memory data. Driveability problems may
exist until computer systems have completed a relearn cycle.
To clear DTCs using a scan tool, refer to owners manual
supplied with scan tool. If scan tool is not available, DTCs may also
be cleared by disconnecting negative battery cable or PCM for at least
15 seconds, allowing PCM to clear DTCs. Reconnect negative battery
cable and check for DTCs to confirm repair.
PCM LOCATION
PCM LOCATION TABLE \
\
\
\
\
\
Application Location
Montero ........................... Right Front Kick Panel
3000GT ............................. Behind Center Console
\
\
\
\
\
\
SUMMARY
If no hard DTCs (or only pass DTCs) are present, driveability\
symptoms exist, or intermittent DTCs exist, proceed to H - TESTS W/O
CODES article for diagnosis by symptom (i.e., ROUGH IDLE, NO START,
etc.) or intermittent diagnostic procedures.
TERMINAL IDENTIFICATION
NOTE: The following terminals are shown as viewed from component
side of connector. Vehicles are equipped with different
combinations of components. Not all components are used on
all models. To determine component usage, see appropriate
wiring diagram in L - WIRING DIAGRAMS article.
TERMINAL IDENTIFICATION DIRECTORY TABLE
\
\
\
\
\
\
Connector See
ASD/Fuel Pump/MFI Relay ...................... Fig. 1 or 2
CKP/CMP Sensor ............................ Fig. 3, 4 or 5
DLC ............................................... Fig. 6
ECT Sensor ........................................ Fig. 7
EVAP Purge Solenoid ............................... Fig. 8
EVAP Vent Solenoid ................................ Fig. 9
Fuel Injector ....................... Fig. 10, 11, 12 or 13
Fuel Pump ................................... Fig. 14 or 15
Fuel Pump Control/Relay Module .................... Fig. 16
FTDP Sensor ...................................... Fig. 17
Generator Field .................................. Fig. 18
HO2S ............................................. Fig. 19
IAC Motor ........................................ Fig. 20
Ignition Coil .......................... Fig. 21, 22 or 23
Ignition Failure Sensor .......................... Fig. 24
Ignition Power Transistor .................. Fig. 25 or 26
KS ............................................... Fig. 27
MDP Sensor ....................................... Fig. 28
PCM .............................................. Fig. 29
Fig. 19: Identifying HO2S Terminals (Front Or Rear)
Courtesy of Mitsubishi Motor Sales of America
Fig. 20: Identifying IAC Motor Terminals
Courtesy of Mitsubishi Motor Sales of America
Fig. 21: Identifying Ignition Coil Terminals (3000GT DOHC)
Courtesy of Mitsubishi Motor Sales of America
Fig. 22: Identifying Ignition Coil Terminals (3000GT SOHC)
Courtesy of Mitsubishi Motor Sales of America
Fig. 23: Identifying Ignition Coil Terminals (Montero)
Courtesy of Mitsubishi Motor Sales of America
Fig. 24: Identifying Ignition Failure Sensor Terminals
Courtesy of Mitsubishi Motor Sales of America
Fig. 25: Identifying Ignition Coil Terminals (Montero & 3000GT DOHC)
Courtesy of Mitsubishi Motor Sales of America
Fig. 26: Identifying Ignition Coil Terminals (3000GT SOHC)
Courtesy of Mitsubishi Motor Sales of America
L - WIRING DIAGRAMS article.
1) Specific self-diagnostic test is not available from
manufacturer at time of publication. Check ignition coil, power
transistor, spark plugs, fuel injectors, heated oxygen sensor,
crankshaft position sensor, and related connectors and harnesses.
2) Also check compression pressure, timing belt, fuel
pressure, and for intake air leaks. See F - BASIC TESTING article.
DTC P0325: KNOCK SENSOR (KS) NO. 1 CIRCUIT FAILURE
NOTE: This test applies to 3000GT equipped with DOHC engine only.
For terminal identification, see TERMINAL IDENTIFICATION. For
circuit and wire color identification, see
L - WIRING DIAGRAMS article.
1) Component or scan tool testing procedure not available
from manufacturer at time of publication. Turn ignition switch to OFF
position. Disconnect KS connector and PCM connector. Ground PCM
connector terminal No. 91. Go to next step.
2) Using DVOM, check for continuity between chassis ground
and KS connector terminal No. 1. If continuity does not exist, repair
wiring harness as necessary. If continuity exists, go to next step.
3) Remove jumper wire from PCM connector terminal No. 1.
Check for continuity between chassis ground and KS connector terminal
No. 2. If continuity does not exist, repair wiring harness as
necessary. If continuity exists, go to next step.
4) Test is complete. Intermittent problem may exist. Road
test vehicle (if necessary) and attempt to duplicate conditions that
caused original complaint. Recheck for DTCs. If no DTCs are displayed,
go to INTERMITTENT DTCS .
DTC P0335: CRANKSHAFT POSITION (CKP) SENSOR CIRCUIT FAILURE
NOTE: For terminal identification, see TERMINAL IDENTIFICATION. For
circuit and wire color identification, see
L - WIRING DIAGRAMS article.
NOTE: Procedures are provided by manufacturer for component
testing using an engine analyzer with oscilloscope
capability. Refer to manufacturer's operation manual for
instructions in use of oscilloscope.
1) If using scan tool, go to step 3). Disconnect CKP sensor
connector. Install Test Harness (MB991348) between CKP sensor and
connector. Using engine analyzer with oscilloscope capability, connect
special patterns probe to CKP sensor connector terminal No. 2. Go to
next step.
2) Start engine. Compare oscilloscope wave pattern with
known-good wave pattern. See Fig. 38. Verify wavelength (time)
decreases as engine RPM increases. If wave pattern fluctuates to left
or right, check for loose timing belt or an abnormality in sensor
pick-up disc. If a rectangular wave pattern is generated even when
engine is not started, substitute known-good CKP sensor. Repeat test.
If wave pattern is still abnormal, go to step 6).
Fig. 38: Identifying Known-Good CKP Sensor Wave Pattern
Courtesy of Mitsubishi Motor Sales of America