ING/PLUMBING - STANDARD PROCEDURE -
REFRIGERANT RECOVERY).
(3) Remove the air filter housing cover to gain
access to the accumulator (Refer to 9 - ENGINE/AIR
INTAKE SYSTEM).
(4) Remove the secondary retaining clip from the
spring-lock coupler that secures the suction line to
the accumulator outlet tube (Fig. 22).
(5) Using the proper A/C line disconnect tool, dis-
connect the suction line from the accumulator outlet
tube (Refer to 24 - HEATING & AIR CONDITION-
ING/PLUMBING/REFRIGERANT LINE COUPLER -
REMOVAL).
(6) Remove the O-ring seal from the accumulator
outlet tube fitting and discard.
(7) Install plugs in, or tape over the opened suc-
tion line and the accumulator outlet tube fitting.
(8) Loosen the bolts that secure the accumulator to
the bracket located on the dash panel.
(9) Remove the secondary retaining clip from the
spring-lock coupler that secures the accumulator to
the evaporator outlet tube.
(10) Using the proper A/C line disconnect tool, dis-
connect the accumulator inlet tube fitting from the
evaporator outlet tube (Refer to 24 - HEATING &
AIR CONDITIONING/PLUMBING/REFRIGERANT
LINE COUPLER - REMOVAL).
(11) Remove the O-ring seal from the accumulator
inlet tube fitting and discard.
(12) Install plugs in, or tape over the opened accu-
mulator inlet tube fitting and the evaporator outlet
tube.
(13) Remove the accumulator from the engine com-
partment.
INSTALLATION
NOTE: If the accumulator is being replaced, add 60
milliliters (2 fluid ounces) of refrigerant oil to the
refrigerant system. Use only refrigerant oil of the
type recommended for the compressor in the vehi-
cle.
(1) Position the accumulator onto the dash panel
bracket in the engine compartment. Do not tighten
the bolts at this time.
(2) Remove the tape or plugs from the accumulator
inlet tube fitting and the evaporator outlet tube.
(3) Lubricate a new rubber O-ring seal with clean
refrigerant oil and install it on the accumulator inlet
tube fitting. Use only the specified O-ring as it is
made of a special material for the R-134a system.
Use only refrigerant oil of the type recommended for
the A/C compressor in the vehicle.
(4) Connect the accumulator inlet tube fitting to
the evaporator outlet tube (Refer to 24 - HEATING &AIR CONDITIONING/PLUMBING/REFRIGERANT
LINE COUPLER - INSTALLATION).
(5) Install the secondary retaining clip onto the
spring-lock coupler that secures the accumulator
inlet tube fitting to the evaporator outlet tube.
(6) Tighten the accumulator bracket bolts to 4.5
N´m (40 in. lbs.).
(7) Remove the tape or plugs from the suction line
fitting and the accumulator outlet tube.
(8) Lubricate a new rubber O-ring seal with clean
refrigerant oil and install it on the accumulator out-
let tube fitting. Use only the specified O-ring as it is
made of a special material for the R-134a system.
Use only refrigerant oil of the type recommended for
the A/C compressor in the vehicle.
(9) Connect the suction line to the accumulator
outlet tube (Refer to 24 - HEATING & AIR CONDI-
TIONING/PLUMBING/REFRIGERANT LINE COU-
PLER - INSTALLATION).
(10) Install the secondary retaining clip onto the
spring-lock coupler that secures the suction line to
the accumulator outlet tube.
(11) Install the air filter housing cover to gain
access to the accumulator (Refer to 9 - ENGINE/AIR
INTAKE SYSTEM).
Fig. 22 A/C Accumulator - Typical
1 - RH INNER FENDER
2 - ACCUMULATOR INLET TUBE
3 - A/C LINE SECONDARY RETAINING CLIP
4 - EVAPORATOR OUTLET TUBE
5 - BOLTS (2)
6 - ACCUMULATOR
7 - SUCTION LINE
8 - A/C LOW PRESSURE SERVICE PORT
9 - A/C LINE SECONDARY RETAINING CLIP
24 - 62 PLUMBINGDR
ACCUMULATOR (Continued)
ING/PLUMBING - STANDARD PROCEDURE -
REFRIGERANT RECOVERY).
(5) Remove the plastic cover from the condenser
outlet stud.
(6) Remove the nut that secures the liquid line fit-
ting to the condenser outlet (Fig. 26).
(7) Disconnect the liquid line from the condenser.
(8) Remove the seal from the liquid line fitting and
discard.
(9) Install plugs in, or tape over the liquid line fit-
ting and condenser outlet port.
(10) Disengage the liquid lines from the body
retaining clips.
(11) Remove the secondary retaining clip from the
spring-lock coupler that secures the front section of
the liquid line to the rear section of the liquid line.
(12) Using the proper A/C line disconnect tool, dis-
connect the front section of the liquid line from the
rear section of the liquid line (Refer to 24 - HEAT-
ING & AIR CONDITIONING/PLUMBING/REFRIG-
ERANT LINE COUPLER - REMOVAL).
(13) Remove the O-ring seal from the liquid line
fitting and discard.
(14) Install plugs in, or tape over the opened front
liquid line fitting and rear liquid line tube.
(15) Remove the secondary retaining clip from the
spring-lock coupler that secures the liquid line to the
evaporator inlet tube.
(16) Using the proper A/C line disconnect tool, dis-
connect the liquid line from the evaporator inlet tube
(Refer to 24 - HEATING & AIR CONDITIONING/
PLUMBING/REFRIGERANT LINE COUPLER -
REMOVAL).
(17) Remove the O-ring seal from the liquid line
fitting and discard.
(18) Install plugs in, or tape over the opened liquid
line fitting and evaporator inlet tube.
(19) Remove both sections of the liquid line from
the engine compartment.
INSTALLATION
(1) Position both sections of the liquid line into the
engine compartment.
(2) Remove the tape or plugs from the rear liquid
line fitting and the evaporator inlet tube.
(3) Lubricate a new rubber O-ring seal with clean
refrigerant oil and install it on the rear liquid line
fitting. Use only the specified O-ring as it is made of
a special material for the R-134a system. Use only
refrigerant oil of the type recommended for the A/C
compressor in the vehicle.
(4) Connect the liquid line fitting to the evaporator
inlet tube (Refer to 24 - HEATING & AIR CONDI-
TIONING/PLUMBING/REFRIGERANT LINE COU-
PLER - INSTALLATION).(5) Install the secondary retaining clip onto the
spring-lock coupler that secures the liquid line fitting
to the evaporator inlet tube.
(6) Remove the tape or plugs from the front liquid
line fitting and the rear liquid line tube.
(7) Lubricate a new rubber O-ring seal with clean
refrigerant oil and install it on the front liquid line
fitting. Use only the specified O-ring as it is made of
a special material for the R-134a system. Use only
refrigerant oil of the type recommended for the A/C
compressor in the vehicle.
(8) Connect the front liquid line fitting to the rear
liquid line tube (Refer to 24 - HEATING & AIR CON-
DITIONING/PLUMBING/REFRIGERANT LINE
COUPLER - INSTALLATION).
(9) Install the secondary retaining clip onto the
spring-lock coupler that secures the front liquid line
fitting to the rear liquid line tube.
(10) Engage the liquid lines to the body retaining
clips.
(11) Remove the tape or plugs from the liquid line
fitting and condenser outlet port.
(12) Lubricate a new rubber O-ring seal with clean
refrigerant oil and install it on the liquid line fitting.
Use only the specified O-ring as it is made of a spe-
Fig. 26 A/C Liquid Line - Typical
1 - BODY RETAINING CLIP
2 - SECONDARY RETAINING CLIP
3 - BODY RETAINING CLIP
4 - LIQUID LINE (REAR SECTION)
5 - SECONDARY RETAINING CLIP
6 - EVAPORATOR INLET TUBE
7 - A/C CONDENSER
8 - NUT
9 - BODY RETAINING CLIP
10 - LIQUID LINE (FRONT SECTION)
24 - 66 PLUMBINGDR
LIQUID LINE (Continued)
cial material for the R-134a system. Use only refrig-
erant oil of the type recommended for the A/C
compressor in the vehicle.
(13) Connect the liquid line to the condenser outlet
port.
(14) Install and tighten the nut that secures the
liquid line fitting to the condenser. Tighten the nut to
20 N´m (180 in. lbs.).
(15) Install the plastic cover onto the condenser
outlet stud.
(16) If equipped with the diesel engine, install the
passenger side battery tray (Refer to 8 - ELECTRI-
CAL/BATTERY SYSTEM/TRAY - INSTALLATION).
(17) If equipped with the diesel engine, install the
passenger side battery (Refer to 8 - ELECTRICAL/
BATTERY SYSTEM/BATTERY - INSTALLATION).
(18) Reconnect the battery negative cables.
(19) Evacuate the refrigerant system (Refer to 24 -
HEATING & AIR CONDITIONING/PLUMBING -
STANDARD PROCEDURE - REFRIGERANT SYS-
TEM EVACUATE).
(20) Charge the refrigerant system (Refer to 24 -
HEATING & AIR CONDITIONING/PLUMBING -
STANDARD PROCEDURE - REFRIGERANT SYS-
TEM CHARGE).
REFRIGERANT
DESCRIPTION
The refrigerant used in this air conditioning sys-
tem is a HydroFluoroCarbon (HFC), type R-134a.
Unlike R-12, which is a ChloroFluoroCarbon (CFC),
R-134a refrigerant does not contain ozone-depleting
chlorine. R-134a refrigerant is a non-toxic, non-flam-
mable, clear, and colorless liquefied gas.
Even though R-134a does not contain chlorine, it
must be reclaimed and recycled just like CFC-type
refrigerants. This is because R-134a is a greenhouse
gas and can contribute to global warming.
OPERATION
R-134a refrigerant is not compatible with R-12
refrigerant in an air conditioning system. Even a
small amount of R-12 added to an R-134a refrigerant
system will cause compressor failure, refrigerant oil
sludge or poor air conditioning system performance.
In addition, the PolyAlkylene Glycol (PAG) synthetic
refrigerant oils used in an R-134a refrigerant system
are not compatible with the mineral-based refriger-
ant oils used in an R-12 refrigerant system.
R-134a refrigerant system service ports, service
tool couplers and refrigerant dispensing bottles have
all been designed with unique fittings to ensure that
an R-134a system is not accidentally contaminated
with the wrong refrigerant (R-12). There are alsolabels posted in the engine compartment of the vehi-
cle and on the compressor identifying to service tech-
nicians that the air conditioning system is equipped
with R-134a.
REFRIGERANT LINE COUPLER
DESCRIPTION
Spring-lock type refrigerant line couplers are used
to connect some of the refrigerant lines and other
components to the refrigerant system. These couplers
require a special tool for disengaging the two coupler
halves.
OPERATION
The spring-lock coupler is held together by a garter
spring inside a circular cage on the male half of the
fitting (Fig. 27). When the two coupler halves are
connected, the flared end of the female fitting slips
behind the garter spring inside the cage on the male
fitting. The garter spring and cage prevent the flared
end of the female fitting from pulling out of the cage.
Two O-rings on the male half of the fitting are
used to seal the connection. These O-rings are com-
patible with R-134a refrigerant and must be replaced
with O-rings made of the same material.
Secondary clips are installed over the two con-
nected coupler halves at the factory for added protec-
tion. In addition, some models have a plastic ring
that is used at the factory as a visual indicator to
confirm that these couplers are connected. After the
Fig. 27 Spring-Lock Coupler - Typical
1 - MALE HALF SPRING-LOCK COUPLER
2 - FEMALE HALF SPRING-LOCK COUPLER
3 - SECONDARY CLIP
4 - CONNECTION INDICATOR RING
5 - COUPLER CAGE
6 - GARTER SPRING
7 - COUPLER CAGE
8 - O-RING SEALS
DRPLUMBING 24 - 67
LIQUID LINE (Continued)
coupler is connected, the plastic indicator ring is no
longer required; however, it will remain on the refrig-
erant line near the coupler cage.
REMOVAL
(1) Recover the refrigerant from the refrigerant
system (Refer to 24 - HEATING & AIR CONDITION-
ING/PLUMBING/REFRIGERANT - STANDARD
PROCEDURE).
(2) Remove the secondary retaining clip from the
spring-lock coupler.
(3) Fit the proper size A/C line disconnect tool
(Special Tool Kit 7193 or equivalent) over the spring-
lock coupler cage (Fig. 28).
(4) Close the two halves of the A/C line disconnect
tool around the spring-lock coupler.
NOTE: The garter spring may not release if the A/C
line disconnect tool is cocked while pushing it into
the coupler cage opening.
(5) Push the A/C line disconnect tool into the open
side of the coupler cage to expand the garter spring.
Once the garter spring is expanded and while still
pushing the disconnect tool into the open side of the
coupler cage, pull on the refrigerant line attached to
the female half of the coupler fitting until the flange
on the female fitting is separated from the garter
spring and cage on the male fitting within the dis-
connect tool.
(6) Open and remove the A/C line disconnect tool
from the disconnected spring-lock coupler.(7) Complete the separation of the two halves of
the coupler fitting. Inspect the O-ring seals and mat-
ing areas for damage.
INSTALLATION
(1) Check to make sure that the garter spring is
located within the cage of the male coupler fitting,
and that the garter spring is not damaged.
(a) If the garter spring is missing, install a new
spring by pushing it into the coupler cage opening.
(b) If the garter spring is damaged, remove it
from the coupler cage with a small wire hook (DO
NOT use a screwdriver) and install a new garter
spring.
(2) Clean any dirt or foreign material from both
halves of the coupler fitting.
CAUTION: Use only the specified O-rings as they
are made of a special material for the R-134a sys-
tem. The use of any other O-rings may allow the
connection to leak intermittently during vehicle
operation.
(3) Install new O-rings on the male half of the cou-
pler fitting.
(4) Lubricate the male fitting and O-rings, and the
inside of the female fitting with clean R-134a refrig-
erant oil. Use only refrigerant oil of the type recom-
mended for the compressor in the vehicle.
(5) Fit the female half of the coupler fitting over
the male half of the fitting.
(6) Push together firmly on the two halves of the
coupler fitting until the garter spring in the cage on
the male half of the fitting snaps over the flanged
end on the female half of the fitting.
(7) Make sure that the spring-lock coupler is fully
engaged by trying to separate the two coupler halves.
This is done by pulling the refrigerant lines on either
side of the coupler away from each other.
(8) Install the secondary retaining clip over the
spring-lock coupler cage.
REFRIGERANT OIL
DESCRIPTION
The refrigerant oil used in R-134a refrigerant sys-
tems is a synthetic-based, PolyAlkylene Glycol (PAG),
wax-free lubricant. Mineral-based R-12 refrigerant
oils are not compatible with PAG oils, and should
never be introduced to an R-134a refrigerant system.
There are different PAG oils available, and each
contains a different additive package. Two different
type of A/C compressors are used in this vehicle
depending on engine application. Both compressors
are designed to use a PAG refrigerant oil. However,
the PAG oil type differs between the two compressor
Fig. 28 Refrigerant Line Spring-Lock Coupler
Disconnect
24 - 68 PLUMBINGDR
REFRIGERANT LINE COUPLER (Continued)
(1) Disconnect and isolate the battery negative
cable.
(2) Recover the refrigerant from the refrigerant
system (Refer to 24 - HEATING & AIR CONDITION-
ING/PLUMBING - STANDARD PROCEDURE -
REFRIGERANT RECOVERY).
(3) Disconnect the wire harness connector from the
A/C pressure transducer.
(4) Remove the nut that secures the discharge line
fitting to the condenser inlet port (Fig. 29).
(5) Disconnect the discharge line from the con-
denser.
(6) Remove the O-ring seal from the discharge line
fitting and discard.
(7) Install plugs in, or tape over the discharge line
fitting and condenser inlet port.
(8) Remove the bolt that secures the suction/dis-
charge line assembly to the A/C compressor.
(9) Disconnect the suction/discharge line assembly
from the A/C compressor.
(10) Remove the O-ring seals from the suction and
discharge line fittings and discard.
(11) Install plugs in, or tape over all of the opened
refrigerant line fittings and the compressor ports.(12) Remove the secondary retaining clip from the
spring-lock coupler that secures the suction line to
the accumulator outlet tube (Fig. 30).
(13) Using the proper A/C line disconnect tool, dis-
connect the suction line from the accumulator outlet
tube (Refer to 24 - HEATING & AIR CONDITION-
ING/PLUMBING/REFRIGERANT LINE COUPLER -
REMOVAL).
(14) Remove the O-ring seal from the accumulator
outlet tube fitting and discard.
(15) Install plugs in, or tape over the opened suc-
tion line and the accumulator outlet tube fitting.
(16) Remove the suction/discharge line assembly
from the engine compartment.
(17) If necessary, remove the A/C pressure trans-
ducer from the discharge line.
REMOVAL - 3.7L/4.7L AND 5.7L HEMI ENGINE
WARNING: REVIEW THE WARNINGS AND CAU-
TIONS IN THE FRONT OF THIS SECTION BEFORE
PERFORMING THE FOLLOWING OPERATION (Refer
to 24 - HEATING & AIR CONDITIONING/PLUMBING -
WARNING) and (Refer to 24 - HEATING & AIR CON-
DITIONING/PLUMBING - CAUTION).
Fig. 29 A/C Suction Line - 5.9L Diesel Engine
1 - CONDENSER
2 - NUT
3 - LIQUID LINE
4 - NUT
5 - PRESSURE TRANSDUCER WIRE CONNECTOR
6 - A/C COMPRESSOR
7 - BOLT
8 - SUCTION/DISCHARGE LINE ASSEMBLY
Fig. 30 Suction Line - A/C Accumulator
1 - RH INNER FENDER
2 - ACCUMULATOR INLET TUBE
3 - A/C LINE SECONDARY RETAINING CLIP
4 - EVAPORATOR OUTLET TUBE
5 - BOLTS (2)
6 - ACCUMULATOR
7 - SUCTION LINE
8 - A/C LOW PRESSURE SERVICE PORT
9 - A/C LINE SECONDARY RETAINING CLIP
DRPLUMBING 24 - 71
SUCTION LINE (Continued)
(1) Disconnect and isolate the battery negative
cable.
(2) Recover the refrigerant from the refrigerant
system (Refer to 24 - HEATING & AIR CONDITION-
ING/PLUMBING - STANDARD PROCEDURE -
REFRIGERANT RECOVERY).
(3) Remove the nut that secures the suction line
fitting to the compressor inlet port (Fig. 31) or (Fig.
32), depending on application.
(4) Disconnect the suction line from the compres-
sor.
(5) Remove the O-ring seal from the suction line
fitting and discard.
(6) Install plugs in, or tape over the suction line
fitting and compressor inlet port.
(7) Remove the secondary retaining clip from the
spring-lock coupler that secures the suction line to
the accumulator outlet tube (Fig. 33).
(8) Using the proper A/C line disconnect tool, dis-
connect the suction line from the accumulator outlet
tube (Refer to 24 - HEATING & AIR CONDITION-
ING/PLUMBING/REFRIGERANT LINE COUPLER -
REMOVAL).
(9) Remove the O-ring seal from the accumulator
outlet tube fitting and discard.(10) Install plugs in, or tape over the opened suc-
tion line and the accumulator outlet tube fitting.
INSTALLATION
INSTALLATION - 5.9L DIESEL ENGINE
(1) If removed, install the A/C pressure transducer
onto the discharge line using a new O-ring seal.
Tighten the transducer securely.
(2) Position the suction/discharge line assembly
into the engine compartment.
(3) Remove the tape or plugs from the suction line
and the accumulator outlet tube fitting.
(4) Lubricate a new rubber O-ring seal with clean
refrigerant oil and install it on the accumulator out-
let tube fitting. Use only the specified O-ring as it is
made of a special material for the R-134a system.
Use only refrigerant oil of the type recommended for
the A/C compressor in the vehicle.
(5) Connect the suction line to the accumulator
outlet tube (Refer to 24 - HEATING & AIR CONDI-
TIONING/PLUMBING/REFRIGERANT LINE COU-
PLER - INSTALLATION).
(6) Install the secondary retaining clip onto the
spring-lock coupler that secures the suction line to
the accumulator outlet tube.Fig. 31 A/C Discharge Line - 3.7L Shown, 4.7L
Typical
1 - NUT
2 - FRONT UPPER CROSSMEMBER
3 - A/C CONDENSER
4 - NUT (2)
5 - SUCTION LINE
6 - A/C COMPRESSOR
7 - A/C PRESSURE TRANSDUCER
8 - WIRE HARNESS CONNECTOR
9 - A/C DISCHARGE LINE
Fig. 32 A/C Suction Line - 5.7L Hemi Engine
1 - DISCHARGE LINE
2 - NUT
3 - CONDENSER
4 - NUT
5 - SUCTION LINE
6 - A/C COMPRESSOR
7 - NUT
8 - A/C PRESSURE TRANSDUCER
24 - 72 PLUMBINGDR
SUCTION LINE (Continued)
(7) Remove the tape or plugs from the suction and
discharge line fittings and the compressor ports.
(8) Lubricate new rubber O-ring seals with clean
refrigerant oil and install them on the suction and
discharge line fittings. Use only the specified O-rings
as they are made of a special material for the R-134a
system. Use only refrigerant oil of the type recom-
mended for the A/C compressor in the vehicle.
(9) Connect the suction/discharge line assembly to
the compressor.
(10) Install and tighten the bolt that secures the
suction/discharge line assembly to the compressor.
Tighten the bolt to 28 N´m (20 ft. lbs.).
(11) Remove the tape or plugs from the discharge
line fitting and condenser inlet port.
(12) Lubricate a new rubber O-ring seal with clean
refrigerant oil and install it on the discharge line fit-
ting. Use only the specified O-ring as it is made of a
special material for the R-134a system. Use only
refrigerant oil of the type recommended for the A/C
compressor in the vehicle.
(13) Connect the discharge line to the condenser
inlet port.(14) Install and tighten the nut that secures the
discharge line fitting to the condenser. Tighten the
nut to 20 N´m (180 in. lbs.).
(15) Connect the wire harness connector to the A/C
pressure transducer.
(16) Reconnect the battery negative cable.
(17) Evacuate the refrigerant system (Refer to 24 -
HEATING & AIR CONDITIONING/PLUMBING -
STANDARD PROCEDURE - REFRIGERANT SYS-
TEM EVACUATE).
(18) Charge the refrigerant system (Refer to 24 -
HEATING & AIR CONDITIONING/PLUMBING -
STANDARD PROCEDURE - REFRIGERANT SYS-
TEM CHARGE).
INSTALLATION - 3.7L/4.7L AND 5.7L HEMI
ENGINE
(1) Position the suction line into the engine com-
partment.
(2) Remove the tape or plugs from the suction line
fitting and the compressor inlet port.
(3) Lubricate a new rubber O-ring seal with clean
refrigerant oil and install it on the suction line fit-
ting. Use only the specified O-ring as it is made of a
special material for the R-134a system. Use only
refrigerant oil of the type recommended for the A/C
compressor in the vehicle.
(4) Connect the suction line to the compressor.
(5) Install and tighten the nut that secures the
suction line to the compressor. Tighten the nut to 28
N´m (20 ft. lbs.).
(6) Remove the tape or plugs from the suction line
and the accumulator outlet tube fitting.
(7) Lubricate a new rubber O-ring seal with clean
refrigerant oil and install it on the accumulator out-
let tube fitting. Use only the specified O-ring as it is
made of a special material for the R-134a system.
Use only refrigerant oil of the type recommended for
the A/C compressor in the vehicle.
(8) Connect the suction line to the accumulator
outlet tube (Refer to 24 - HEATING & AIR CONDI-
TIONING/PLUMBING/REFRIGERANT LINE COU-
PLER - INSTALLATION).
(9) Install the secondary retaining clip onto the
spring-lock coupler that secures the suction line to
the accumulator outlet tube.
(10) Reconnect the battery negative cable.
(11) Evacuate the refrigerant system (Refer to 24 -
HEATING & AIR CONDITIONING/PLUMBING -
STANDARD PROCEDURE - REFRIGERANT SYS-
TEM EVACUATE).
(12) Charge the refrigerant system (Refer to 24 -
HEATING & AIR CONDITIONING/PLUMBING -
STANDARD PROCEDURE - REFRIGERANT SYS-
TEM CHARGE).
Fig. 33 A/C Accumulator - Typical
1 - RH INNER FENDER
2 - ACCUMULATOR INLET TUBE
3 - A/C LINE SECONDARY RETAINING CLIP
4 - EVAPORATOR OUTLET TUBE
5 - BOLTS (2)
6 - ACCUMULATOR
7 - SUCTION LINE
8 - A/C LOW PRESSURE SERVICE PORT
9 - A/C LINE SECONDARY RETAINING CLIP
DRPLUMBING 24 - 73
SUCTION LINE (Continued)
Immediately after a cold start, between predeter-
mined temperature thresholds limits, the three port
solenoid is briefly energized. This initializes the
pump by drawing air into the pump cavity and also
closes the vent seal. During non test conditions the
vent seal is held open by the pump diaphragm
assembly which pushes it open at the full travel posi-
tion. The vent seal will remain closed while the
pump is cycling due to the reed switch triggering of
the three port solenoid that prevents the diaphragm
assembly from reaching full travel. After the brief
initialization period, the solenoid is de-energized
allowing atmospheric pressure to enter the pump
cavity, thus permitting the spring to drive the dia-
phragm which forces air out of the pump cavity and
into the vent system. When the solenoid is energized
and de energized, the cycle is repeated creating flow
in typical diaphragm pump fashion. The pump is con-
trolled in 2 modes:
Pump Mode: The pump is cycled at a fixed rate to
achieve a rapid pressure build in order to shorten the
overall test length.
Test Mode: The solenoid is energized with a fixed
duration pulse. Subsequent fixed pulses occur when
the diaphragm reaches the Switch closure point.
The spring in the pump is set so that the system
will achieve an equalized pressure of about 7.5º H20.
The cycle rate of pump strokes is quite rapid as the
system begins to pump up to this pressure. As the
pressure increases, the cycle rate starts to drop off. If
there is no leak in the system, the pump would even-
tually stop pumping at the equalized pressure. If
there is a leak, it will continue to pump at a rate rep-
resentative of the flow characteristic of the size of the
leak. From this information we can determine if the
leak is larger than the required detection limit (cur-
rently set at .040º orifice by CARB). If a leak is
revealed during the leak test portion of the test, the
test is terminated at the end of the test mode and no
further system checks will be performed.
After passing the leak detection phase of the test,
system pressure is maintained by turning on the
LDP's solenoid until the purge system is activated.
Purge activation in effect creates a leak. The cycle
rate is again interrogated and when it increases due
to the flow through the purge system, the leak check
portion of the diagnostic is complete.
The canister vent valve will unseal the system
after completion of the test sequence as the pump
diaphragm assembly moves to the full travel position.
Evaporative system functionality will be verified by
using the stricter evap purge flow monitor. At an
appropriate warm idle the LDP will be energized to
seal the canister vent. The purge flow will be clocked
up from some small value in an attempt to see a
shift in the 02 control system. If fuel vapor, indicatedby a shift in the 02 control, is present the test is
passed. If not, it is assumed that the purge system is
not functioning in some respect. The LDP is again
turned off and the test is ended.
MISFIRE MONITOR
Excessive engine misfire results in increased cata-
lyst temperature and causes an increase in HC emis-
sions. Severe misfires could cause catalyst damage.
To prevent catalytic convertor damage, the PCM
monitors engine misfire.
The Powertrain Control Module (PCM) monitors
for misfire during most engine operating conditions
(positive torque) by looking at changes in the crank-
shaft speed. If a misfire occurs the speed of the
crankshaft will vary more than normal.
FUEL SYSTEM MONITOR
To comply with clean air regulations, vehicles are
equipped with catalytic converters. These converters
reduce the emission of hydrocarbons, oxides of nitro-
gen and carbon monoxide. The catalyst works best
when the Air Fuel (A/F) ratio is at or near the opti-
mum of 14.7 to 1.
The PCM is programmed to maintain the optimum
air/fuel ratio of 14.7 to 1. This is done by making
short term corrections in the fuel injector pulse width
based on the O2S sensor output. The programmed
memory acts as a self calibration tool that the engine
controller uses to compensate for variations in engine
specifications, sensor tolerances and engine fatigue
over the life span of the engine. By monitoring the
actual fuel-air ratio with the O2S sensor (short term)
and multiplying that with the program long-term
(adaptive) memory and comparing that to the limit,
it can be determined whether it will pass an emis-
sions test. If a malfunction occurs such that the PCM
cannot maintain the optimum A/F ratio, then the
MIL will be illuminated.
CATALYST MONITOR
To comply with clean air regulations, vehicles are
equipped with catalytic converters. These converters
reduce the emission of hydrocarbons, oxides of nitro-
gen and carbon monoxide.
Normal vehicle miles or engine misfire can cause a
catalyst to decay. This can increase vehicle emissions
and deteriorate engine performance, driveability and
fuel economy.
The catalyst monitor uses dual oxygen sensors
(O2S's) to monitor the efficiency of the converter. The
dual O2S's sensor strategy is based on the fact that
as a catalyst deteriorates, its oxygen storage capacity
and its efficiency are both reduced. By monitoring
the oxygen storage capacity of a catalyst, its effi-
ciency can be indirectly calculated. The upstream
DREMISSIONS CONTROL 25 - 3
EMISSIONS CONTROL (Continued)