Terrn(s1 Abbreviation Definition Previously used (if applicable) term(s) (or Eng- lish Eauivalentl
5
Babbitt metal
backlight
back
-up lamp
balk ring
t
battery positive Voltage B+
Barometric Absolute Pressure BARO
Sensor
base Idle
base timing
battery
before bottom dead center BBDC
before top dead center BTDC
blower BLR
Body Processor Module BPM
British Standards BS
I British Standards Automotive BSAu
brake horsepower
brake mean effective pressure BMEP
brake
ontoff BOO
brake rotor
I bottom dead center BDC
bypass air BPA
bumper guard
I
bushing I
rotating component of manual transmission
which prevents premature engagement of
gears
The positive Voltage from
a battery or any
circuit connected directly to it.
sensor measuring the pressure of
surrounding air at any given temperature
and altitude
Idle
rpm determined by the throttle lever
being hard
-set on the throttle body with the
IAC solenoid disconnected
Spark advance in degrees before top dead
center of the base engine without any control
from the PCM
Electrical storage device producing DC
Voltage by means of electrochemical
reaction
event occurring before BDC
event (usually ignition) occurring before TDC
Device which supplies a current of air at
moderate pressure, e.g. heater or
AJC blower
Control module for body electrical systems,
e.g. interior lamps, windshield wash wipe
control etc..
standard specification issued by the British
Standards Institution
effective horsepower developed by an
engine or motor, as measured by a brake
applied to its output shaft
that part of the effective pressure developed
in a cylinder that would result in a cylinder
output equal to the bhp of the engine
indicates the position of the brake pedal
process of bedding
-in the internal working
surfaces of e.g. an engine by avoiding excess
build
-up of heat
lowest point of piston travel in a
reciprocating engine
mechanical control of throttle bypass air
cylindrical plain bearing white
metal
backlight,
rear screen reversing lamp
baulk ring
B+,
+ve, VSS
BARO, APS
CCM (Central
Control Module).
CPU
brake disc
running
-in
overrider bush
Issue 1 August 1994 8 X300 VSM
Automatic Transmission (V12 & AJl6 Supercharged) Pomrtrain
8.2.1 GENERAL DESCRIPTION
This section provides information relating to the Powertrain 4L80-E transmissions fitted to the 4,O liter supercharged
engine (4,OL SC) and to the 6,O liter engine (6,OL).
The Powertrain 4L80-E is a four-speed, high torque capacity, electronically controlled automatic transmission, which
comprises a torque converter with lock-up direct drive clutch and three planetary gear sets. Five multiple diskclutches,
one intermediate sprag clutch assembly, two roller clutch assemblies and two band assemblies provide the drive el- ements necessary for correct sequential gear engagement and operation.
The torque converter containing
a pump, a turbine (rotor), a stator assembly, and a clutch pressure disksplined to the
turbine, acts as a fluid coupling for smooth torque transmission from the engine. The converter also supplies addi- tional torque multiplication when necessary, and the torque converter clutch (TCC) pressure disk provides a mechan- ical direct drive or 'lock-up' above a certain speed in top gear for greater fuel economy.
Gearshift operations are controlled from the Transmission Control Module (TCM), which governs the electronically
controlled valve body situated within the transmission.
Three planetary gear sets provide reverse and the four forward ratios, the changing of which is fully automatic in rela
- tion to load, vehicle speed and throttle opening. The Transmission Control Module receives and integrates various ve- hicle sensor input signals, and transmits operating signals to the solenoids located in the control valve assembly.
These solenoids govern the transmission operating pressures, up-shift and down-shift gear selection patterns and
also the torque converter clutch operation by pulse width modulated control.
8.2.1.1 Gear Ranges
Selectable gear positions are: P - Park, R - Reverse, N - Neutral, D - Drive, 3, 2.
P - Park position of the shift lever provides a mechanical locking of the output shaft of the transmission, and as such,
must only be engaged when the the vehicle is stationary. In addition, and for
extra safety, the handbrake should also
be applied. It is necessary to have the ignition ON and the footbrake applied to move the shift lever from the Park
position. For ignition key removal the shift lever must be in the Park position. The engine can be started in the Park
position.
R - Reverse enables the vehicle to be operated in a rearwards direction. The engine cannot be started in the Reverse
position.
N
-Neutral position enables the engine to be started and operated without driving the vehicle. It also allows the vehicle
to be moved manually for access, ie for removal of the propeller shaft.
D
-Drive position allows the automatic selection of all four forward gear ratios during normal driving conditions for
maximum efficiency and fuel economy. On acceleration, down-shifts are obtained by depressing the accelerator pedal
or by manual selection. The engine cannot be started in this position.
3
- Manual third position allows automatic operation of the three lower gear ratios but inhibits selection of the fourth
ratio. This position is used for towing a trailer or negotiating hilly terrain when greater engine braking control is re- quired. The engine cannot be started in this position.
2 - Manual second position allows automatic operation of the two lower gear ratios but inhibits selection of the third
and fourth ratios. This position is used for heavy traffic congestion or negotiating hilly terrain when even greater en
- gine braking control is required than is provided by manual third. This ratio may be selected at any vehicle speed - even if the transmission is in third or fourth ratio, the transmission will immediately down-shift to second gear pro- vided the vehicle speed is below 137 km / h (85 mile / h). The engine cannot be started in this position.
N.g!b: With the Performance Mode switch in the NORMAL position, the vehicle will pull away in second gear. How- ever, if more than 75 per cent of throttle is applied when the vehicle speed is between zero and 13 km/ h (8 mile / h), then first gear will be selected. From 13 to 61 km/ h (8 to 38 mile/ h) first gear is obtainable by 'kick-down'.
In 'sport' mode thevehicle pulls away in first gear and the transmission operatesfully in all four forward gears.
X300 VSM 1 Issue 1 August 1994
Driveshafts & Final Drive
9.10 REAR HUB BEARING, RENEW
SRO 64.15.14
9.11
SRO 64.15.15
REAR HUB OIL SEAL, RENEW
Removal
= Disconnect vehicle battery ground lead.
= Slacken appropriate axle shaft hub nut.
. Support the vehicle at the rear and remove rear road
m: To aid assembly, markthe position of the head of the
hub carrier fulcrum, relative to the wishbone slot.
. Disconnect handbrake cable inner and outer.
. Remove brake caliper in accordance with Section 12, but do not disconnect hydraulics.
. Slacken hub carrier fulcrum and remove ABS sensor from
hub carrier.
. Remove axle shaft hub nut (and discard), collar and hub
carrier fulcrum.
. Using service tools JD 1D/7 and JD ID (Fig. I), push shaft
through hub and pull the hub carrier assembly clear.
. Using Hub tool JD 132 - 1 (1 Fig. 2) and a suitable press,
align the hub assembly tothetool ensuring the hand brake
expander locates into the tool cut out.
. Locate button JD 132 - 2 and press the hub from the
carrier.
. Remove the outer bearing race and seal from either the hub or the carrier and place the ABS rotor to one side.
. Remove from the carrier; bearing spacer, adjustable
spacer, inner race and seal.
Renew Bearings /Sea/($
wheel.
. Using a suitable drift remove the inner and outer bearing
cups.
. Clean all components paying particular attention to the re- moval of all tracesof lockingcompoundfrom the hub AND
axle shaft splines.
. Using service tools JD 550 - 4 /2,4 / 1 and 18G 134, fit new
cups to the hub carrier ensuring that they are 'square'and
fully seated.
Fit the new outer bearing race to the hub.
&&Q:
. Assemble the hub and race to the carrier along with bear-
Do not fit seals or 'pack' bearing at this point.
ing spacer (noting orientation) and the largest available
adjustable spacer,
i.e. 3.47 mm.
. Fit the new inner bearing and ABS rotor to the hub. Fig.
1
Fig.
2
. Apply a compressive load to the hub / bearing assembly, using a press, vice or long bolt. Ensure that the force that
. Measure the hub end-float, using service tool JD 13B dial test indicator (DTI).
. Using the indicated endfloat dimension, select a suitable adjustable spacer to give the specified pre-load.
m:
. Remove the outer bearing from the hub.
. Lubricate the bearings as specified.
. Locate the outer bearing to the hub carrier assembly.
the axle shaft
fixing would normally provide is not exceeded.
See Service Data, (preliminary pages) for pre
-load specification and typical example.
Issue 1 August 1994 8 X300 VSM
Brakes (a)
12.1.2. Anti-lock Braking / Traction Control Operation
The rear wheels are controlled collectively on a 'select-low' principle during ABS operation. During traction control,
separate circuits allow individual control of the rear wheels. To facilitate this the valve block has four outlet ports.
The
ABS/TC CM is integrated with the valve block. The pump, motor, valve block and control module are supplied as
a unit and are non-sewiceable. Faulty units must be renewed as a whole.
Both front and rear brakes on
all vehicles are fitted with single piston caliper assemblies. Ventilated brake rotors, with
provision for parking brake shoes at the rear, are fitted all round.
0
Issue 1 August 1994 X300 VSM 3
1. Vacuum booster 9. Pressure conscious reduction valve 2. Vacuum hose 10. Ventilated brake rotor 3. Tandem master cylinder 11. Single piston caliper 4. Primary brake circuit 12. %way brake pipe connector
5. Secondary brake circuit 13. Wheel speed sensor
6. Hydraulic pump / motor unit 14. ABS warning lamp 7. Valve block 15. Brake fluid level warning lamp
8. ABS/TCCM
Fig. 1 ABS / Traction Control System
The vacuum booster (see Fig.
1) is mounted on the brake pedal box and secured by three bolts. Brake pedal force is
increased by the vacuum booster which activates the Tandem Master Cylinder (TMC) intermediate piston. Brake fluid
is supplied to the pump inlet ports on two separate circuits. The primary circuit supplies the front brakes whilst the
secondary circuit supplies the rear brakes.
Pressure conscious reduction valves (PCRVs) are fitted between the outlet of the valve block and the rear brake circuit
to optimize. The valves are fitted to prevent over braking due to the increased size of the rear brake calipers which are
required for traction control. Up to a threshold of 15 bar, brake pressure to the front and rear brakes is equal. Above
15 bar the PCRVs reduce pressure to the rear brakes to provide a closer balance between front and rear brakes and
optimize road adhesion.
Wheel speed sensors are fitted to all wheels to transmit wheel speed information to the control module. The module
uses this information to modulate brake pressure during anti
-lock braking or traction control.
12.1.3. Anti-lock Braking Operation
170 287
1. Vacuum booster 9. Pressure conscious reduction valve
2. Vacuum hose 10. Ventilated brake rotor
3. Tandem master cylinder 11. Single piston caliper
4. Primary brake circuit 12.
%way brake pipe connector
5. Secondary brake circuit 13. Wheel speed sensor
6. Hydraulic pump I motor unit 14. ABS warning lamp 7. Valve block 15. Brake fluid level warning lamp
8. ABSICM
Fig. 1 Brake System (non-Traction Control)
The rear brakes (see Fig. 1) are controlled collectively on a
'select-low' principle. Under ABS braking conditions, equal
brake pressure is applied to both rear calipers, although only one wheel may have a tendency to lock.
The valve block has three outlet
ports, Brake fluid volume is supplied equally to the rear brakes via the %way brake
pipe connector.
Issue 1 August 1994 4 X300 VSM
0 12.1.6 Calipers
Both front and rear brakes on all vehicles are fitted with
single piston caliper assemblies that act upon 28mm thick
ventilated brake rotors (front brakes) and 20mm thickventi- lated brake rotors/hubs (rear brakes). Rear ventilated brake rotordhubs are fitted to cope with the increased demands- brought about by traction control.
The brake rotors must be renewed
whenthe minimumthick- ness specified below is reached:
0 Front brake rotor - 27mm
0 Rear brake rotor - 18.5mm.
On the front brakes (Fig. 1) two bolts secure the caliper
carrier to the suspension vertical link.
On the rear brakes (Fig. 2) two bolts (wire locked) secure the
caliper carrier to the hub carrier.
Fig. 1
\
Fig. 2
J70-278
X300 VSM 7 Issue 1 August 1994
The caliper (1 Fig. 1) is mounted on the carrier (2 Fig.1) by
means of two guiding pins (3 Fig. 1) and a caliper retaining
clip (5 Fig. ILTheguiding pins(3Fig. 1)slidein bushes(4 Fig. 1) fitted to the caliper.
The guiding pins are fitted with dust caps which must be
fitted when reassembling the caliper.
Inspection and Cleaning
WAR- BRAKE LINING DUST CAN, IF INHALED, DAM-
AGE YOUR HEALTH. ALWAYS USE A VACUUM
BRUSH TO REMOVE DRY BRAKE LINING DUST.
NEVER USE AN AIR LINE.
When fitting new brake pads always take necessary precau- tions and remove the brake dust from around the caliper
area. After renewal, pump the brake pedal several times to
centralize the new brake pads.
W: If both front and rear calipers have been removed
from the vehicle, take care not to mix up left and
right hand caliper bodies. I Fig. 1
Remove
all brake dust from the caliper, carrier and brake rotor. Thoroughly clean the pad abutment areas, avoid dam- aging the piston and dust cover.
CAUTION: When cleaning brake components only use a proprietary fluid. Never use petrol. Use of petrol, paraffin
or other mineral based fluids can prove dangerous.
Examine all the components for signs of wear, damage and corrosion. Pay particular attention to the piston and piston
bore.
Remove caliper body corrosion with a wire brush or wire wool.
No attempt should be made to clean a badly corroded
or scored piston bore. The caliper must be renewed
CAUTIW: No attempt should be made to clean corroded bolts.
Inspect the caliper guide pins, ensure that they are not corroded or seized and that the caliper moves freely. If they are
difficult to remove or corroded in any way, they must be replaced together with new dust covers.
CAUTION: Ensure that working surfaces and hands are clean. Use only brake fluid of the correct specification to lubri- cate the new seals when fitting.
When reassembling always renew piston seals. Lubricate the new piston seal and fit carefully to the inner groove of the piston bore.
Issue 1 August 1994 a X300 VSM
Brakes
Parking Brake Adjusfmenf
Cable slack must be removed by adjustment of the intermediate cable length. The handbrake should be fully on be-
tween three and five clicks.
Parking Brake Shoe Assembly
The parking brakes are of the duo-sewo type. The expander
assembly (6 Fig. 1) is mounted on the backplate mounting
lug. The brake shoes locate on the expander assembly and
the adjuster
(1 Fig. I).These are held in position by the upper
and lower return springs (4 and 5 Fig. 1) and the hold down
springs (2 Fig. 1). The adjuster allows manual adjustment of
the brake shoes.
To remove the brake shoe assemblies the handbrake must
be released and the adjuster slackened.
The use of
a spring removal tool is recommended when re- moving the brake shoes. Strong pliers may be used, but
there is a risk of both personal injury and loss of compo- nents, should the pliers slip.
lnspedion and Cleaning
Clean and examine all components for wear or damage, re- newing parts as necessary. Fig.
1
When
reassembling the expander assembly, liberally grease the components using a proprietary mechanical brake
grease. Lightly grease the threads of the adjuster.
CAUTION: Do not get grease onto the lining material. Light surfacecontamination can be removed with emery cloth,
but heavy penetration of grease or fluid will render the material unsuitable for further use and the linings
must be renewed.
Re-assembly
When reassembling the brake shoes, lightly grease the shoe tips and back plate contact area. The brake shoes and
the expander assembly should befitted to the backplate with the lower return spring in position. When the brake shoes
are located, the adjuster, upper return spring and hold down springs should then be fitted. The brake shoes should
be adjusted
so that the brake rotorhub can just be fitted. Final adjustment should allow the brake rotor/hub to rotate
without excessive drag. Light running contact is permissible.
0
0
0
0
X300 VSM Issue 1 August 1994 10