* Check airflow sensor.
* Check coolant temperature sensor.
* Check idle position switch.
* Check power supply to ECU ground.
* Check fuel pressure.
* Check for disconnected or damaged vacuum hoses.
* Check for control relay malfunction.
* Check for PFI system malfunction.
* Check for fuel pump drive control system malfunction.
* Check for ignition coil malfunction.
* Check for ignition timing malfunction.
* Check for power transistor malfunction.
* Check for fuel injector malfunction.
* Check for ECU malfunction.
* Ensure electrical harness, connectors and wires are not
broken or loose.
ROUGH OR UNSTABLE IDLE
* Check intake air temperature sensor.
* Check purge control solenoid valve (if applicable).
* Check vehicle speed sensor.
* Check engine coolant temperature sensor.
* Check barometric pressure sensor.
* Check ignition switch.
* Check idle position switch.
* Check throttle position sensor.
* Check TDC sensor.
* Check crank angle sensor.
* Check power steering oil pressure switch.
* Check A/C switch and power relay (if applicable).
* Check inhibitor switch.
* Check oxygen sensor.
* Check airflow sensor.
* Check motor position sensor (if equipped).
* Check fuel pressure.
* Check for disconnected or damaged vacuum hoses.
* Check PFI system malfunction.
* Check for stepper motor malfunction (if applicable).
* Check for fuel injector malfunction.
* Check for power transistor malfunction.
* Check for vehicle speed switch malfunction.
* Check for ECU malfunction.
* Ensure electrical harness, connectors and wires are not
broken or loose.
ENGINE HESITATES OR POOR ACCELERATION
* Check intake air temperature sensor.
* Check engine coolant temperature sensor.
* Check barometric pressure sensor.
* Check ignition switch.
* Check ignition coil.
* Check EGR control solenoid valve (if applicable).
* Check idle position switch.
* Check throttle position sensor.
* Check TDC sensor.
* Check crank angle sensor.
* Check power steering oil pressure switch.
* Check A/C switch (if applicable).
* Check inhibitor switch (A/T).
* Check oxygen sensor.
* Check airflow sensor.
* Check motor position sensor (if applicable).
* Check fuel pressure.
* Check for disconnected or damaged vacuum hoses.
* Check for PFI system malfunction.
* Check for stepper motor malfunction (if applicable).
* Check for fuel injector malfunction.
* Check for power transistor malfunction.
* Check for A/C power relay control system malfunction (if
applicable).
* Check for ECU malfunction.
* Ensure electrical harness, connectors and wires are not
broken or loose.
ENGINE SURGES
* Check coolant temperature sensor.
* Check idle position switch.
* Check EGR control solenoid valve (if applicable).
* Check fuel pressure.
* Check for fuel injector malfunction.
DETONATION OR KNOCKING
* Check airflow sensor.
* Check for cooling system problems.
* Check fuel quality.
* Check intake air temperature sensor.
* Check barometric pressure sensor.
* Check ignition coil.
* Check power transistor.
* Check for EGR system malfunction.
POOR FUEL MILEAGE
* Check intake air temperature sensor.
* Check engine coolant temperature sensor.
* Check barometric pressure sensor.
* Check ignition switch.
* Check idle position switch.
* Check throttle position sensor.
* Check TDC sensor.
* Check crank angle sensor.
* Check power steering oil pressure switch.
* Check A/C switch (if applicable).
* Check inhibitor switch (A/T).
* Check oxygen sensor.
* Check airflow sensor.
* Check motor position sensor (if applicable).
* Check fuel pressure.
* Check for PFI system malfunction.
* Check for stepper motor malfunction.
* Check for fuel injector malfunction.
* Check for power transistor malfunction.
INTERMITTENTS
INTERMITTENT PROBLEM DIAGNOSIS
Intermittent fault testing requires duplicating circuit or
component failure to identify problem. These procedures may lead to
computer setting a fault code which may help in diagnosis.
If problem vehicle does not produce fault codes, monitor
Inhibitor Switch (Automatic Transmission Only)
Inhibitor switch senses position of transmission select
lever, indicating engine load due to automatic transmission
engagement. Based on this signal, ECU commands ISC motor to increase
throttle angle, maintaining optimum idle speed.
Intake Air Temperature Sensor
Incorporated in airflow sensor assembly, this resistor-based
sensor measures temperature of incoming air and supplies air density
information to ECU.
Motor Position Sensor (MPS)
Incorporated in ISC motor (or separate unit on some models),
senses ISC motor plunger position and sends electrical signal to ECU.
Oxygen (O2) Sensor
Located in exhaust system, generates an output voltage.
Output voltage varies with oxygen content of exhaust gas stream. ECU
adjusts air/fuel mixture based on signals from oxygen sensor.
Power Steering Oil Pressure Switch
Detects increase in power steering oil pressure. When power
steering oil pressure increases, switch contacts close, signalling
ECU. ECU commands ISC motor, raising idle speed to compensate for drop
in engine RPM due to power steering load.
TDC Sensor
See CRANKSHAFT ANGLE & TDC SENSOR ASSEMBLY.
Throttle Position Sensor (TPS)
A variable resistor mounted on throttle body. ECU uses
voltage signal received from TPS to determine throttle plate angle.
Vehicle Speed Sensor
Located in speedometer in instrument cluster, uses a reed
switch to sense speedometer gear revolutions. ECU uses gear
revolutions to determine vehicle speed.
OUTPUT SIGNALS
NOTE: Vehicles are equipped with different combinations of
computer-controlled components. Not all components listed
below are used on every vehicle. For theory and operation on
each output component, refer to the system indicated in
brackets after component.
CHECK ENGINE Light
See SELF DIAGNOSTIC SYSTEM.
EGR Control Solenoid Valve
See EXHAUST GAS RECIRCULATION (EGR) CONTROL under EMISSION
SYSTEMS.
Fuel Injectors
See FUEL CONTROL under FUEL SYSTEM.
Fuel Pressure Control Solenoid Valve (Turbo Only)
See FUEL DELIVERY under FUEL SYSTEM.
Fuel Pressure Regulator
See FUEL DELIVERY under FUEL SYSTEM.
Fuel Pump Relay (MPI Control Relay)
See FUEL DELIVERY under FUEL SYSTEM.
Idle Speed Control Servo
See IDLE SPEED under FUEL SYSTEM.
Power Transistor(s) & Ignition Coils
See IGNITION SYSTEMS.
Purge Control Solenoid Valve
See EVAPORATIVE CONTROL under EMISSION SYSTEMS.
Self-Diagnostic Connector
See SELF-DIAGNOSTIC SYSTEM.
Wastegate Control Solenoid Valve
See TURBOCHARGED ENGINES under AIR INDUCTION SYSTEM.
FUEL SYSTEM
FUEL DELIVERY
Electric fuel pump (located in gas tank) feeds fuel through
in-tank fuel filter, external fuel filter (located in engine
compartment) and fuel injector rail.
Fuel Pump
Consists of an impeller driven by a motor. Pump has an
internal check valve to maintain system pressure and a relief valve to
protect the fuel pressure circuit. Pump receives voltage supply from
Multi-Point Injection (MPI) control relay.
Fuel Pressure Control Solenoid Valve (Turbo Only)
Prevents rough idle due to fuel percolation. On engine
restart, if engine coolant or intake air temperatures reach a preset
value, ECU applies voltage to fuel pressure control solenoid valve for
2 minutes after engine re-start. Valve opens, allowing atmospheric
pressure to be applied to fuel pressure regulator diaphragm. This
allows maximum available fuel pressure at injectors, enriching fuel
mixture and maintaining stable idle at high engine temperatures.
Fuel Pressure Regulator
Located on fuel injector rail, this diaphragm-operated relief
valve adjusts fuel pressure according to engine manifold vacuum.
As engine manifold vacuum increases (closed throttle), fuel
pressure regulator diaphragm opens relief valve, allowing pressure to
bleed off through fuel return line, reducing fuel pressure.
As engine manifold vacuum decreases (open throttle), fuel
pressure regulator diaphragm closes valve, preventing pressure from
bleeding off through fuel return line, increasing fuel pressure.
FUEL CONTROL
Fuel Injectors
Fuel is supplied to engine through electronically pulsed
(timed) injector valves located on fuel rail(s). ECU controls amount\
of fuel metered through injectors based upon information received from
sensors.
IDLE SPEED
Air Conditioner Relay
When A/C is turned on with engine at idle, ECU signals ISC
motor to increase idle speed. To prevent A/C compressor from switching
on before idle speed has increased, ECU momentarily opens A/C relay
circuit.
Idle Speed Control (ISC) Motor
Controls pintle-type air valve (DOHC engines) or throttle
plate angle (SOHC engines) to regulate volume of intake air at idle.
During start mode, ECU controls idle intake air volume
according to coolant temperature input. After starting, with idle
position switch activated (throttle closed), fast idle speed is
controlled by ISC motor and fast idle air control valve (if equipped).\
When idle switch is deactivated (throttle open), ISC motor
moves to a preset position in accordance with coolant temperature
input.
When automatic transmission (if equipped) is shifted from
Neutral to Drive, A/C is turned on or power steering pressure reaches
a preset value, ECU signals ISC motor to increase engine RPM.
Fast Idle Air Control Valve
Some models use a coolant temperature-sensitive fast idle air
control valve, located on throttle body, to admit additional intake
air volume during engine warm-up. Control valve closes as temperature
increases, restricting by-pass airflow rate. At engine warm-up, valve
closes completely.
IGNITION SYSTEMS
DIRECT IGNITION SYSTEM (DIS) - DOHC ENGINES
Ignition system is a 2-coil, distributorless ignition system.
Crankshaft angle and TDC sensor assembly, mounted in place of
distributor, are optically controlled.
Power Transistors & Ignition Coils
Based on crankshaft angle and TDC sensor inputs, ECU controls
timing and directly activates each power transistor to fire coils.
Power transistor "A" controls primary current of ignition coil "A" to
fire spark plugs on cylinders No. 1 and 4 at the same time. Power
transistor "B" controls primary current of ignition coil "B" to fire
spark plugs on cylinders No. 2 and 3 at the same time.
Although each coil fires 2 plugs at the same time, ignition
takes place in only one cylinder since the other cylinder is on its
exhaust stroke when plug fires.
ELECTRONIC IGNITION SYSTEM - SOHC ENGINES
Mitsubishi breakerless electronic ignition system uses a disc
and optical sensing unit to trigger power transistor.
Power Transistor & Ignition Coil
Power transistor is mounted inside distributor with disc and
optical sensing unit. When ignition is on, ignition coil primary
circuit is energized. As distributor shaft rotates, disc rotates,
triggering optical sensing unit. ECU receives signals from optical
sensing unit. Signals are converted and sent to power transistor,
interrupting primary current flow and inducing secondary voltage.
IGNITION TIMING CONTROL SYSTEM
Ignition timing is controlled by ECU. ECU adjusts timing
based upon various conditions, such as engine temperature, altitude
and detonation (turbo vehicles only).