remains on (light may flash) during vehicle operation, cause of
malfunction must be determined by using DIAGNOSTIC FAULT CHARTS (if
testing with voltmeter) or diagnostic CODE CHARTS (if testing with
DRB-II). If a sensor fails, ECU will use a substitute value in its
calculations to continue engine operation. In this condition, vehicle
is functional, but loss of good driveability may result.
INTERMITTENT FAILURES
Intermittent failures may cause CHECK ENGINE light to flicker
or illuminate and go out after the intermittent fault goes away.
However, the corresponding trouble code will be retained in ECU
memory. If related fault does not reoccur within a certain time frame,
related trouble code will be erased from ECU memory. Intermittent
failures may be caused by a sensor, connector or wiring related
problems. See INTERMITTENTS in H - TESTS W/O CODES article.
PRETEST INSPECTION
Before proceeding with diagnosis, the following precautions
must be followed:
* Vehicle must have a fully charged battery and functional
charging system.
* Visually inspect connectors and circuit wiring being worked
on.
* DO NOT disconnect battery or ECU. This will erase any fault
codes stored in ECU.
* DO NOT cause short circuits when performing electrical tests.
This will set additional fault codes, making diagnosis of original
problem more difficult.
* DO NOT use a test light in place of a voltmeter.
* When checking for spark, ensure coil wire is NO more than
1/4" from ground. If coil wire is more than 1/4" from ground,
damage to vehicle electronics and/or ECU may result.
* DO NOT prolong testing of fuel injectors. Engine may
hydrostatically (liquid) lock.
* When a vehicle has multiple fault codes, always repair lowest
number fault code first.
* If DRB-II is being used to diagnose system, always perform
verification test after repairs are made.
ENTERING ON-BOARD DIAGNOSTICS (USING VOLTMETER)
1) Before entering on-board diagnostics, refer to PRETEST
INSPECTION in this article. Turn ignition switch to OFF position.
Locate self-diagnostic connector. See SELF-DIAGNOSTIC TEST CONNECTOR
LOCATION table. Using an analog voltmeter, connect voltmeter positive
lead to self-diagnostic connector terminal No. 1 and negative lead to
terminal No. 12 (ground). See Fig. 6.
2) Turn ignition switch to ON position and disclosure of ECU
memory will begin. If 2 or more systems are non-functional, they are
indicated by order of increasing code number. Indication is made by
12-volt pulses of voltmeter pointer. A constant repetition of short
12-volt pulses indicates system is normal. If system is abnormal,
voltmeter will pulse between zero and 12 volts.
3) Signals will appear on voltmeter as long and short 12-volt
pulses. Long pulses represent tens; short pulses represent ones. For
example 4 long pulses and 3 short pulses indicates Code 43. See
input device usage on specific models, see appropriate wiring diagram
in M - WIRING DIAGRAMS.
Air Conditioner Switch
When A/C is turned on, signal is sent to ECU. With engine at
idle, ECU increases idle speed through Idle Speed Control (ISC) motor.\
Airflow Sensor
Incorporated in airflow sensor assembly, airflow sensor is a
Karmen Vortex-type sensor which measures intake airflow rate.
Intake air flows through tunnel in airflow sensor assembly.
Airflow sensor transmits radio frequency signals across direction of
incoming airflow, downstream of vortex. Intake air encounters vortex,
causing turbulence in tunnel.
Turbulence disrupts radio frequency, causing variations in
transmission. Airflow sensor converts frequency transmitted into a
proportionate electrical signal which is sent to ECU.
Airflow Sensor Assembly
Mounted inside air cleaner, incorporates airflow sensor,
atmospheric pressure sensor and intake air temperature sensor.
Atmospheric (Barometric) Pressure Sensor
Incorporated in the airflow sensor assembly, converts
atmospheric pressure to electrical signal which is sent to ECU. ECU
adjusts air/fuel ratio and ignition timing according to altitude.
Coolant Temperature Sensor
Converts coolant temperature to electrical signal for use by
ECU. ECU uses coolant temperature information for controlling fuel
enrichment when engine is cold.
Crankshaft Angle & TDC Sensor Assembly
Assembly is located in distributor on SOHC engines. On DOHC
engines, which use Direct (or Distributorless) Ignition System (DIS)\
,
assembly is separate unit mounted in place of distributor. Assembly
consists of triggering disc (mounted on shaft) and stationary optical
sensing unit. Camshaft drives shaft, triggering optical sensing unit.
ECU determines crank angle and TDC based on signals received from
optical sensing unit.
Detonation Sensor (Turbo Only)
Located in cylinder block, senses engine vibration during
detonation (knock). Sensor converts vibration into electrical signal.
ECU retards ignition timing based on this signal.
Engine Speed (Tach Signal)
ECU uses ignition coil tach signal to determine engine speed.
Idle Position Switch
On all DOHC engines and Sigma 3.0L, idle position switch is
separate switch mounted on throttle body. On all other models, idle
position switch is incorporated in ISC motor or throttle position
sensor, depending on vehicle application. When throttle valve is
closed, switch is activated. When throttle valve is at any other
position, switch is deactivated. This input from idle position switch
is used by ECU for controlling fuel delivery time during deceleration.
Ignition Timing Adjustment Terminal
Used for adjusting base ignition timing. When terminal is
grounded, ECU timing control function is by-passed, allowing base
timing to be adjusted.
See FUEL DELIVERY under FUEL SYSTEM.
Idle Speed Control Servo
See IDLE SPEED under FUEL SYSTEM.
Power Transistor(s) & Ignition Coils
See IGNITION SYSTEMS.
Purge Control Solenoid Valve
See EVAPORATIVE CONTROL under EMISSION SYSTEMS.
Self-Diagnostic Connector
See SELF-DIAGNOSTIC SYSTEM.
Wastegate Control Solenoid Valve
See TURBOCHARGED ENGINES under AIR INDUCTION SYSTEM.
FUEL SYSTEM
FUEL DELIVERY
Electric fuel pump (located in gas tank) feeds fuel through
in-tank fuel filter, external fuel filter (located in engine
compartment) and fuel injector rail.
Fuel Pump
Consists of an impeller driven by a motor. Pump has an
internal check valve to maintain system pressure and a relief valve to
protect the fuel pressure circuit. Pump receives voltage supply from
Multi-Point Injection (MPI) control relay.
Fuel Pressure Control Solenoid Valve (Turbo Only)
Prevents rough idle due to fuel percolation. On engine
restart, if engine coolant or intake air temperatures reach a preset
value, ECU applies voltage to fuel pressure control solenoid valve for
2 minutes after engine re-start. Valve opens, allowing atmospheric
pressure to be applied to fuel pressure regulator diaphragm. This
allows maximum available fuel pressure at injectors, enriching fuel
mixture and maintaining stable idle at high engine temperatures.
Fuel Pressure Regulator
Located on fuel injector rail, this diaphragm-operated relief
valve adjusts fuel pressure according to engine manifold vacuum.
As engine manifold vacuum increases (closed throttle), fuel
pressure regulator diaphragm opens relief valve, allowing pressure to
bleed off through fuel return line, reducing fuel pressure.
As engine manifold vacuum decreases (open throttle), fuel
pressure regulator diaphragm closes valve, preventing pressure from
bleeding off through fuel return line, increasing fuel pressure.
FUEL CONTROL
Fuel Injectors
Fuel is supplied to engine through electronically pulsed
(timed) injector valves located on fuel rail(s). ECU controls amount\
of fuel metered through injectors based upon information received from
sensors.
IDLE SPEED
Air Conditioner Relay
When A/C is turned on with engine at idle, ECU signals ISC
motor to increase idle speed. To prevent A/C compressor from switching
on before idle speed has increased, ECU momentarily opens A/C relay
circuit.
Idle Speed Control (ISC) Motor
Controls pintle-type air valve (DOHC engines) or throttle
plate angle (SOHC engines) to regulate volume of intake air at idle.
During start mode, ECU controls idle intake air volume
according to coolant temperature input. After starting, with idle
position switch activated (throttle closed), fast idle speed is
controlled by ISC motor and fast idle air control valve (if equipped).\
When idle switch is deactivated (throttle open), ISC motor
moves to a preset position in accordance with coolant temperature
input.
When automatic transmission (if equipped) is shifted from
Neutral to Drive, A/C is turned on or power steering pressure reaches
a preset value, ECU signals ISC motor to increase engine RPM.
Fast Idle Air Control Valve
Some models use a coolant temperature-sensitive fast idle air
control valve, located on throttle body, to admit additional intake
air volume during engine warm-up. Control valve closes as temperature
increases, restricting by-pass airflow rate. At engine warm-up, valve
closes completely.
IGNITION SYSTEMS
DIRECT IGNITION SYSTEM (DIS) - DOHC ENGINES
Ignition system is a 2-coil, distributorless ignition system.
Crankshaft angle and TDC sensor assembly, mounted in place of
distributor, are optically controlled.
Power Transistors & Ignition Coils
Based on crankshaft angle and TDC sensor inputs, ECU controls
timing and directly activates each power transistor to fire coils.
Power transistor "A" controls primary current of ignition coil "A" to
fire spark plugs on cylinders No. 1 and 4 at the same time. Power
transistor "B" controls primary current of ignition coil "B" to fire
spark plugs on cylinders No. 2 and 3 at the same time.
Although each coil fires 2 plugs at the same time, ignition
takes place in only one cylinder since the other cylinder is on its
exhaust stroke when plug fires.
ELECTRONIC IGNITION SYSTEM - SOHC ENGINES
Mitsubishi breakerless electronic ignition system uses a disc
and optical sensing unit to trigger power transistor.
Power Transistor & Ignition Coil
Power transistor is mounted inside distributor with disc and
optical sensing unit. When ignition is on, ignition coil primary
circuit is energized. As distributor shaft rotates, disc rotates,
triggering optical sensing unit. ECU receives signals from optical
sensing unit. Signals are converted and sent to power transistor,
interrupting primary current flow and inducing secondary voltage.
IGNITION TIMING CONTROL SYSTEM
Ignition timing is controlled by ECU. ECU adjusts timing
based upon various conditions, such as engine temperature, altitude
and detonation (turbo vehicles only).
system consists of PCV valve, oil separator, breather and ventilation
hoses.
PCV valve is a one-way check valve, located in valve cover.
When engine is running, manifold vacuum pulls PCV valve open, allowing
crankcase fumes to enter intake manifold. If engine backfires through
intake manifold, PCV valve closes to prevent crankcase combustion.
SELF-DIAGNOSTIC SYSTEM
Self-diagnostic system monitors input and output signals. On
all models, codes can be read using analog voltmeter. On some models,
scan tool can be used to read codes. For additional information, see G
- TESTS W/ CODES article.
CHECK ENGINE Light
Also called Malfunction Indicator Light by manufacturer,
comes on when ignition is turned on. Light remains on for several
seconds after engine has started. If an abnormal input signal occurs,
light comes on and code is stored in memory. If an abnormal input
signal returns to normal, ECU turns light off but code remains stored
in memory until cleared. If ignition is turned on again, light will
not come on until ECU detects malfunction during system operation.
NOTE: ECU diagnostic memory is retained by direct power supply
from the battery. Memory is not erased by turning off
ignition but is erased if battery or ECU is disconnected.
Free play in steering See STEERING COLUMN
shaft bearing article
Bearing loose on shaft See STEERING COLUMN
serrations article
\
\
\
\
\
\
\
Clicking Noise Pump slippers too long See POWER STEERING PUMP
in Pump article
Broken slipper springs See POWER STEERING PUMP
article
Excessive wear or nicked See POWER STEERING PUMP
rotors article
Damaged cam contour See POWER STEERING PUMP
article
\
\
\
\
\
\
\
Poor Return of Wheel rubbing against See STEERING COLUMN
Wheel turn signal SWITCHES article
Flange rubbing steering See STEERING COLUMN
gear adjuster article
Tight or frozen steering See STEERING COLUMN
shaft bearing article
Steering gear out of See POWER STEERING GEAR
adjustment article
Sticking or plugged See POWER STEERING PUMP
spool valve article
Improper front end See WHEEL ALIGNMENT
alignment article
Wheel bearings worn or See FRONT SUSPENSION
loose article
Ties rods or ball joints Check and replace if
binding necessary
Intermediate shaft joints See STEERING COLUMN
binding article
Kinked pressure hoses Correct or replace if
necessary
Loose housing head See POWER STEERING GEAR
spanner nut article
Damaged valve lever See POWER STEERING GEAR
article
Sector shaft adjusted See ADJUSTMENTS in POWER
too tight STEERING GEAR article
Worm thrust bearing See ADJUSTMENTS in POWER
adjusted too tight STEERING GEAR article
Reaction ring sticking See POWER STEERING GEAR
in cylinder article