right several times. Start engine, and turn steering wheel back and
forth to raise fluid temperature to approximately 122-140F (50-60C).
3) With engine idling, gradually close shutoff valve of
pressure gauge to increase hydraulic pressure. If idle speed does not
increase 200-250 RPM when fluid pressure reaches 213-284 psi (15-20
kg/cm
), replace power steering idle-up switch.
4) Gradually open shutoff valve. If engine speed does not
return to curb idle speed between 100-142 psi (7-10 kg/cm
), replace
power steering idle-up switch. Remove testing equipment. Bleed air
from system as in step 2).
IGNITION SYSTEM
NOTE: For basic ignition checks, see F - BASIC TESTING article in
ENGINE PERFORMANCE Section.
TIMING CONTROL SYSTEMS
Crank Angle Sensor
Crank angle sensor is located inside distributor on SOHC
engines and is attached to cylinder head on DOHC engines. If
malfunction occurs, Code 22 will set. For testing procedure, see
appropriate G - TESTS W/CODES article in the ENGINE PERFORMANCE
Section.
EMISSION SYSTEMS & SUB-SYSTEMS
EXHAUST GAS RECIRCULATION (EGR)
System Testing (Federal)
1) Disconnect Green-striped hose from throttle body, and
connect vacuum pump to hose end. Plug nipple where hose was connected
to throttle body. When engine is cold, 122
F (50C) or less, and at
idle, apply vacuum to disconnected hose. If idle does not change and
vacuum bleeds down, system is okay.
2) When engine is hot, 205
F (95C), and at idle, apply 1.8
in. Hg. If idle does not change and vacuum holds, system is okay.
Using a vacuum pump, apply 7.7 in. Hg. If idle becomes unstable or
engine stalls (and vacuum holds), system is okay.
System Testing (California)
1) Connect vacuum "T" fitting into Green-striped hose from
EGR valve, and connect vacuum gauge to vacuum tee. When engine coolant
temperature is 68
F (20C) or less and engine is idling, snap throttle
open to race engine. If no change in vacuum reading is detected on
gauge, system is okay.
2) When engine coolant temperature is 158
F (70C) or more
and engine is idling, snap throttle open to race engine. If vacuum
increases to 3.9 in. Hg or higher, system is okay.
3) Using vacuum pump, apply specified vacuum to open EGR
valve. See EGR VALVE SPECIFICATIONS table. If idle becomes unstable or
engine stalls, system is okay.
EGR Control Solenoid Valve (Pickup & Ram-50, California)
1) EGR control solenoid valve is located near left shock
tower. Label and disconnect vacuum hoses and wiring harness from
solenoid valve.
2) Connect hand vacuum pump to vacuum nipple where Green-
striped vacuum hose was connected. Apply vacuum and ensure vacuum does
not hold. Apply battery voltage to one terminal of solenoid, and
ground other. Ensure vacuum holds.
3) Using an ohmmeter, measure resistance between terminals of
solenoid valve. At room temperature, reading should be 36-44 ohms.
Replace solenoid if not to specification.
NOTE: EGR temperature sensor only determines if EGR is operating.
An inoperative sensor will not affect driveability or
exhaust emissions.
EGR Temperature Sensor (California)
1) Remove EGR temperature sensor from EGR valve. Place EGR
temperature sensor in water. While increasing water temperature,
measure resistance between wire terminals.
2) At a temperature of 122
F (50C), resistance should be 60,
000-80,000 ohms. At 212F (100C), resistance should be 11,000-14,000
ohms. Replace EGR temperature sensor if resistance differs
significantly from specifications.
EGR Valve
1) Remove EGR valve. Check valve for sticking, carbon
deposits and damage. Clean valve with solvent if necessary. Apply 19.8
in. Hg to valve diaphragm. If valve does not hold vacuum, replace
valve.
2) Apply specified vacuum to valve diaphragm. See CLOSED IN.
HG in EGR VALVE SPECIFICATIONS table. If valve begins to open below
specification, replace valve.
3) Apply specified vacuum to valve diaphragm. See OPEN IN. HG
in EGR VALVE SPECIFICATIONS table. If valve is not completely open at
or above specification, replace valve.
EGR VALVE SPECIFICATIONS TABLE
\
\
\
\
\
\
Application Closed Open
In. Hg In. Hg
Montero ....................... 2.4 ........... 6.7
Pickup & Ram-50 ............... 1.2 ........... 9.4
\
\
\
\
\
\
FUEL EVAPORATION
System Test
1) Disconnect Red-striped purge hose from throttle body, and
connect to hand vacuum pump. Plug nipple on throttle body where purge
hose was removed.
2) With engine coolant temperature at 140
F (60C) or less
and engine idling, apply 14.8 in. Hg. Vacuum should hold. Raise engine
speed to 3000 RPM and again apply 14.8 in. Hg. Vacuum should hold.
3) With engine coolant temperature at 158
F (70C) or more
and engine idling, apply 14.8 in. Hg. Vacuum should hold. Turn engine
off. Start engine and within 3 minutes of starting engine, apply
vacuum. Vacuum should bleed down.
4) With engine running for more than 3 minutes after
starting, raise engine speed to 3000 RPM and apply 14.8 in. Hg. Vacuum
should hold momentarily and then bleed down.
NOTE: In step 4), vacuum should bleed down continuously if vehicle
is at an altitude of 7200 ft. (2200 m) or higher or if
intake air temperature is 122
F (50C) or higher.
Purge Control Solenoid Valve
1) Purge control solenoid valve is located near left shock
tower. Label and disconnect both vacuum hoses from solenoid valve.
Disconnect electrical connector. Connect hand vacuum pump to solenoid
* Check airflow sensor.
* Check coolant temperature sensor.
* Check idle position switch.
* Check power supply to ECU ground.
* Check fuel pressure.
* Check for disconnected or damaged vacuum hoses.
* Check for control relay malfunction.
* Check for PFI system malfunction.
* Check for fuel pump drive control system malfunction.
* Check for ignition coil malfunction.
* Check for ignition timing malfunction.
* Check for power transistor malfunction.
* Check for fuel injector malfunction.
* Check for ECU malfunction.
* Ensure electrical harness, connectors and wires are not
broken or loose.
ROUGH OR UNSTABLE IDLE
* Check intake air temperature sensor.
* Check purge control solenoid valve (if applicable).
* Check vehicle speed sensor.
* Check engine coolant temperature sensor.
* Check barometric pressure sensor.
* Check ignition switch.
* Check idle position switch.
* Check throttle position sensor.
* Check TDC sensor.
* Check crank angle sensor.
* Check power steering oil pressure switch.
* Check A/C switch and power relay (if applicable).
* Check inhibitor switch.
* Check oxygen sensor.
* Check airflow sensor.
* Check motor position sensor (if equipped).
* Check fuel pressure.
* Check for disconnected or damaged vacuum hoses.
* Check PFI system malfunction.
* Check for stepper motor malfunction (if applicable).
* Check for fuel injector malfunction.
* Check for power transistor malfunction.
* Check for vehicle speed switch malfunction.
* Check for ECU malfunction.
* Ensure electrical harness, connectors and wires are not
broken or loose.
ENGINE HESITATES OR POOR ACCELERATION
* Check intake air temperature sensor.
* Check engine coolant temperature sensor.
* Check barometric pressure sensor.
* Check ignition switch.
* Check ignition coil.
* Check EGR control solenoid valve (if applicable).
* Check idle position switch.
* Check throttle position sensor.
* Check TDC sensor.
* Check crank angle sensor.
* Check power steering oil pressure switch.
* Check A/C switch (if applicable).
* Check inhibitor switch (A/T).
* Check oxygen sensor.
* Check airflow sensor.
* Check motor position sensor (if applicable).
* Check fuel pressure.
* Check for disconnected or damaged vacuum hoses.
* Check for PFI system malfunction.
* Check for stepper motor malfunction (if applicable).
* Check for fuel injector malfunction.
* Check for power transistor malfunction.
* Check for A/C power relay control system malfunction (if
applicable).
* Check for ECU malfunction.
* Ensure electrical harness, connectors and wires are not
broken or loose.
ENGINE SURGES
* Check coolant temperature sensor.
* Check idle position switch.
* Check EGR control solenoid valve (if applicable).
* Check fuel pressure.
* Check for fuel injector malfunction.
DETONATION OR KNOCKING
* Check airflow sensor.
* Check for cooling system problems.
* Check fuel quality.
* Check intake air temperature sensor.
* Check barometric pressure sensor.
* Check ignition coil.
* Check power transistor.
* Check for EGR system malfunction.
POOR FUEL MILEAGE
* Check intake air temperature sensor.
* Check engine coolant temperature sensor.
* Check barometric pressure sensor.
* Check ignition switch.
* Check idle position switch.
* Check throttle position sensor.
* Check TDC sensor.
* Check crank angle sensor.
* Check power steering oil pressure switch.
* Check A/C switch (if applicable).
* Check inhibitor switch (A/T).
* Check oxygen sensor.
* Check airflow sensor.
* Check motor position sensor (if applicable).
* Check fuel pressure.
* Check for PFI system malfunction.
* Check for stepper motor malfunction.
* Check for fuel injector malfunction.
* Check for power transistor malfunction.
INTERMITTENTS
INTERMITTENT PROBLEM DIAGNOSIS
Intermittent fault testing requires duplicating circuit or
component failure to identify problem. These procedures may lead to
computer setting a fault code which may help in diagnosis.
If problem vehicle does not produce fault codes, monitor
input device usage on specific models, see appropriate wiring diagram
in M - WIRING DIAGRAMS.
Air Conditioner Switch
When A/C is turned on, signal is sent to ECU. With engine at
idle, ECU increases idle speed through Idle Speed Control (ISC) motor.\
Airflow Sensor
Incorporated in airflow sensor assembly, airflow sensor is a
Karmen Vortex-type sensor which measures intake airflow rate.
Intake air flows through tunnel in airflow sensor assembly.
Airflow sensor transmits radio frequency signals across direction of
incoming airflow, downstream of vortex. Intake air encounters vortex,
causing turbulence in tunnel.
Turbulence disrupts radio frequency, causing variations in
transmission. Airflow sensor converts frequency transmitted into a
proportionate electrical signal which is sent to ECU.
Airflow Sensor Assembly
Mounted inside air cleaner, incorporates airflow sensor,
atmospheric pressure sensor and intake air temperature sensor.
Atmospheric (Barometric) Pressure Sensor
Incorporated in the airflow sensor assembly, converts
atmospheric pressure to electrical signal which is sent to ECU. ECU
adjusts air/fuel ratio and ignition timing according to altitude.
Coolant Temperature Sensor
Converts coolant temperature to electrical signal for use by
ECU. ECU uses coolant temperature information for controlling fuel
enrichment when engine is cold.
Crankshaft Angle & TDC Sensor Assembly
Assembly is located in distributor on SOHC engines. On DOHC
engines, which use Direct (or Distributorless) Ignition System (DIS)\
,
assembly is separate unit mounted in place of distributor. Assembly
consists of triggering disc (mounted on shaft) and stationary optical
sensing unit. Camshaft drives shaft, triggering optical sensing unit.
ECU determines crank angle and TDC based on signals received from
optical sensing unit.
Detonation Sensor (Turbo Only)
Located in cylinder block, senses engine vibration during
detonation (knock). Sensor converts vibration into electrical signal.
ECU retards ignition timing based on this signal.
Engine Speed (Tach Signal)
ECU uses ignition coil tach signal to determine engine speed.
Idle Position Switch
On all DOHC engines and Sigma 3.0L, idle position switch is
separate switch mounted on throttle body. On all other models, idle
position switch is incorporated in ISC motor or throttle position
sensor, depending on vehicle application. When throttle valve is
closed, switch is activated. When throttle valve is at any other
position, switch is deactivated. This input from idle position switch
is used by ECU for controlling fuel delivery time during deceleration.
Ignition Timing Adjustment Terminal
Used for adjusting base ignition timing. When terminal is
grounded, ECU timing control function is by-passed, allowing base
timing to be adjusted.
See FUEL DELIVERY under FUEL SYSTEM.
Idle Speed Control Servo
See IDLE SPEED under FUEL SYSTEM.
Power Transistor(s) & Ignition Coils
See IGNITION SYSTEMS.
Purge Control Solenoid Valve
See EVAPORATIVE CONTROL under EMISSION SYSTEMS.
Self-Diagnostic Connector
See SELF-DIAGNOSTIC SYSTEM.
Wastegate Control Solenoid Valve
See TURBOCHARGED ENGINES under AIR INDUCTION SYSTEM.
FUEL SYSTEM
FUEL DELIVERY
Electric fuel pump (located in gas tank) feeds fuel through
in-tank fuel filter, external fuel filter (located in engine
compartment) and fuel injector rail.
Fuel Pump
Consists of an impeller driven by a motor. Pump has an
internal check valve to maintain system pressure and a relief valve to
protect the fuel pressure circuit. Pump receives voltage supply from
Multi-Point Injection (MPI) control relay.
Fuel Pressure Control Solenoid Valve (Turbo Only)
Prevents rough idle due to fuel percolation. On engine
restart, if engine coolant or intake air temperatures reach a preset
value, ECU applies voltage to fuel pressure control solenoid valve for
2 minutes after engine re-start. Valve opens, allowing atmospheric
pressure to be applied to fuel pressure regulator diaphragm. This
allows maximum available fuel pressure at injectors, enriching fuel
mixture and maintaining stable idle at high engine temperatures.
Fuel Pressure Regulator
Located on fuel injector rail, this diaphragm-operated relief
valve adjusts fuel pressure according to engine manifold vacuum.
As engine manifold vacuum increases (closed throttle), fuel
pressure regulator diaphragm opens relief valve, allowing pressure to
bleed off through fuel return line, reducing fuel pressure.
As engine manifold vacuum decreases (open throttle), fuel
pressure regulator diaphragm closes valve, preventing pressure from
bleeding off through fuel return line, increasing fuel pressure.
FUEL CONTROL
Fuel Injectors
Fuel is supplied to engine through electronically pulsed
(timed) injector valves located on fuel rail(s). ECU controls amount\
of fuel metered through injectors based upon information received from
sensors.
IDLE SPEED
Air Conditioner Relay
When A/C is turned on with engine at idle, ECU signals ISC
motor to increase idle speed. To prevent A/C compressor from switching
on before idle speed has increased, ECU momentarily opens A/C relay
circuit.
Idle Speed Control (ISC) Motor
Controls pintle-type air valve (DOHC engines) or throttle
plate angle (SOHC engines) to regulate volume of intake air at idle.
During start mode, ECU controls idle intake air volume
according to coolant temperature input. After starting, with idle
position switch activated (throttle closed), fast idle speed is
controlled by ISC motor and fast idle air control valve (if equipped).\
When idle switch is deactivated (throttle open), ISC motor
moves to a preset position in accordance with coolant temperature
input.
When automatic transmission (if equipped) is shifted from
Neutral to Drive, A/C is turned on or power steering pressure reaches
a preset value, ECU signals ISC motor to increase engine RPM.
Fast Idle Air Control Valve
Some models use a coolant temperature-sensitive fast idle air
control valve, located on throttle body, to admit additional intake
air volume during engine warm-up. Control valve closes as temperature
increases, restricting by-pass airflow rate. At engine warm-up, valve
closes completely.
IGNITION SYSTEMS
DIRECT IGNITION SYSTEM (DIS) - DOHC ENGINES
Ignition system is a 2-coil, distributorless ignition system.
Crankshaft angle and TDC sensor assembly, mounted in place of
distributor, are optically controlled.
Power Transistors & Ignition Coils
Based on crankshaft angle and TDC sensor inputs, ECU controls
timing and directly activates each power transistor to fire coils.
Power transistor "A" controls primary current of ignition coil "A" to
fire spark plugs on cylinders No. 1 and 4 at the same time. Power
transistor "B" controls primary current of ignition coil "B" to fire
spark plugs on cylinders No. 2 and 3 at the same time.
Although each coil fires 2 plugs at the same time, ignition
takes place in only one cylinder since the other cylinder is on its
exhaust stroke when plug fires.
ELECTRONIC IGNITION SYSTEM - SOHC ENGINES
Mitsubishi breakerless electronic ignition system uses a disc
and optical sensing unit to trigger power transistor.
Power Transistor & Ignition Coil
Power transistor is mounted inside distributor with disc and
optical sensing unit. When ignition is on, ignition coil primary
circuit is energized. As distributor shaft rotates, disc rotates,
triggering optical sensing unit. ECU receives signals from optical
sensing unit. Signals are converted and sent to power transistor,
interrupting primary current flow and inducing secondary voltage.
IGNITION TIMING CONTROL SYSTEM
Ignition timing is controlled by ECU. ECU adjusts timing
based upon various conditions, such as engine temperature, altitude
and detonation (turbo vehicles only).
EMISSION SYSTEMS
EXHAUST GAS RECIRCULATION (EGR) CONTROL
Federal (Non-Turbocharged)
To lower oxides of nitrogen (NOx) exhaust emissions, a non-
computer controlled exhaust gas recirculation system is used. EGR
operation is controlled by throttle body ported vacuum. Vacuum is
routed through thermovalve to prevent EGR operation at low engine
temperatures.
Spring pressure holds EGR valve closed during low vacuum
conditions (engine idling or wide open throttle). When vacuum pressure\
increases and overcomes EGR spring pressure, EGR valve is lifted and
allows exhaust gases to flow into intake manifold for combustion.
California & Turbocharged
ECU controls EGR operation by activating EGR control solenoid
valve according to engine load. When engine is cold, ECU signals EGR
control solenoid valve to deactivate EGR.
California models are equipped with an EGR temperature
sensor. When EGR malfunction occurs, EGR temperature decreases and ECU
illuminates CHECK ENGINE (malfunction indicator) light.
EGR Control Solenoid Valve
Denies or allows vacuum supply to EGR valve, based upon ECU
commands.
Thermovalve
Denies or allows vacuum supply to EGR valve based on coolant
temperature.
EVAPORATIVE CONTROL
Fuel evaporation system prevents fuel vapor from entering
atmosphere. System consists of a special fuel tank with vapor
separator tanks (if equipped), vacuum relief filler cap, overfill
limiter (2-way valve), fuel check valve, thermovalve (if equipped),
charcoal canister, purge control valve, purge control solenoid valve
and connecting lines and hoses.
Purge Control Solenoid Valve
When engine is off, fuel vapors are vented into charcoal
canister. When engine is warmed to normal operating temperature and
running above idle, ECU energizes purge control solenoid valve,
allowing vacuum to purge valve.
Canister vapors are then drawn through purge valve into
intake manifold for burning. Purge control solenoid valve remains
closed during idle and engine warm-up to reduce HC and CO emissions.
HIGH ALTITUDE CONTROL (HAC)
This system compensates for variations in altitude. When
atmospheric (barometric) pressure sensor determines vehicle is above
preset altitude, ECU compensates by adjusting air/fuel mixture and
ignition timing. If HAC system is inoperative, there will be an
increase in emissions.
PCV VALVE
Positive Crankcase Ventilation (PCV) valve operates in the
closed crankcase ventilation system. Closed crankcase ventilation