Crankshaft End Play
1) Using dial indicator, check crankshaft end play. Inspect
crankshaft thrust surfaces or thrust bearing for wear if not within
specification. See ENGINE SPECIFICATIONS table.
2) Replace thrust bearing if required. When replacing thrust
bearing, pry crankshaft forward then reward prior to tightening main
bearing cap to specification. Recheck end play. Replace crankshaft if
not within specification.
REAR MAIN BEARING OIL SEAL
Removal
Remove transmission, clutch housing and flywheel or drive
plate. Using screwdriver, pry oil seal from housing. Avoid damage to
surrounding area.
NOTE: Shim must be used when installing old type oil seal Part No.
(324 1669) only. DO NOT use shim when installing new type
oil seal Part. No. (8933 004 143).
Installation
1) Position wing nut on Seal Installer (J-36306) until it
contacts the shaft nut. See Fig. 7. Install shim if old type seal Part
No. (324 1669) is used.
2) Lubricate inner and outer edges of seal. Install seal on
seal installer with seal dust shield toward the wing nut. Install seal
installer on crankshaft so pilot and dowel are positioned on the
crankshaft.
3) Thread the seal installer attaching screws into the
crankshaft and tighten. Rotate wing nut until it bottoms. This will
properly position the seal.
4) Remove seal installer. Ensure dust shield is not curled
under. Reverse removal procedures for remaining components.
Fig. 7: Installing Rear Main Bearing Oil Seal
WATER PUMP
Removal
with manifold pressure information.
Knock Sensor
The knock (detonation) sensor, located in the cylinder head,
provides an input signal to the ECU whenever detonation occurs. The
ECU then retards ignition advance to eliminate the detonation at the
applicable cylinders.
Speed Sensor
The speed sensor (or crankshaft position sensor) is mounted
at the flywheel/drive plate housing. The sensor detects the flywheel/
drive plate teeth as they pass during engine operation and sends an
electrical signal to the ECU, which calculates engine speed.
The flywheel/drive plate has a large trigger tooth and notch
located 90
and 12 small teeth before each top dead center (TDC)
position. When a small tooth or notch pass the magnetic core in the
sensor, the build-up and collapse of the magnetic field induces a
small voltage signal in the sensor pick-up windings.
The ECU counts these signals representing the number of teeth
as they pass the sensor. When a larger trigger tooth and notch pass
the magnetic core, a higher voltage signal is sent to the ECU. This
indicates to the ECU that a piston will be at the TDC position 12
teeth later. The ECU either advances or retards ignition timing as
necessary according to sensor inputs.
Battery Voltage
Battery voltage input to the ECU ensures that proper voltage
is applied to the injector. The ECU varies voltage to compensate for
battery voltage fluctuations.
Starter Motor Relay
The engine starter motor relay provides an input to the ECU,
indicating the starter motor is engaged.
Wide Open Throttle (WOT) Switch
The WOT switch is mounted on the side of the throttle body.
The switch provides a voltage signal to the ECU under wide open
throttle conditions. The ECU responds to this signal by enriching the
air/fuel mixture delivered to the injector.
Closed Throttle (Idle) Switch
This switch is integral with the idle speed actuator (ISA)
motor. The switch provides a voltage signal to the ECU, which
increases or decreases the throttle stop angle in response to engine
operating conditions.
Transmission Gear Position Indicator
The gear position indicator is mounted on vehicles equipped
with automatic transaxles. It provides a signal to the ECU to
indicate that the transaxle is in a driving mode and not in Park or
Neutral.
Power Steering Pressure Switch
The switch increases the idle speed during periods of high
power steering pump load and low engine RPM.
A/C Switch
The A/C switch sends a signal to the ECU when the air
conditioner is operating and when the compressor clutch must be
engaged to lower the temperature. The ECU, in turn, increases engine
speed to compensate for the added load of the air conditioner.
FUEL CONTROL
Fig. 4: Location of ECU-Controlled Relays
Load Swap Relay
The Load Swap Relay is used on models with A/C and power
steering. The relay works in conjunction with the power steering
pressure switch to disengage the A/C compressor clutch.
If the compressor clutch is engaged when the power steering
pressure switch contacts close, the input signal from the switch to
the ECU also activates the load swap relay. The relay contacts open,
cutting off electrical feed to the compressor clutch. The clutch
remains disengaged until the pressure switch contacts reopen and
engine idle returns to normal.
NOTE: The load swap relay does not reengage the compressor clutch
immediately. The relay has a timer that delays energizing
the clutch for .5 second to ensure smooth engagement.
Fuel Pump Control Relay
Battery voltage is applied to the relay through the ignition
switch. The relay is energized when a ground is provided by the ECU.
When energized, voltage is applied to the fuel pump See Fig. 15.
A/C Clutch Relay
The ECU controls the A/C compressor clutch by means of the
A/C clutch relay. See Fig. 15.
UP-SHIFT INDICATOR LAMP
Manual transaxle vehicles are equipped with an up-shift
indicator lamp. The lamp is normally turned on when the ignition
switch is turned "ON", and is turned off when the engine starts.
The lamp will again light during engine operation, according
to engine speed and load conditions. A switch, located on the
transaxle, prevents lamp from lighting when transmission is shifted
to the next highest gear. If the shift of gears is not performed, the
ECU will turn the lamp off after 3-5 seconds.
MODES OF OPERATION
IGNITION SWITCH "ON" MODE
When the TBI system is activated by the ignition switch, the
system power relay is energized, and the fuel pump is energized by
the ECU through the fuel pump relay. The pump will operate for
approximately 1 second, unless the engine is operating or the starter
motor is engaged.
The ECU receives input from the CTS, MAT, and MAP sensors.
The up-shift indicator lamp is illuminated.
ENGINE START-UP MODE
When the starter motor is engaged, the ECU receives inputs
from the CTS and speed sensors, the starter motor relay, and the wide
open throttle switch. The fuel pump is activated by the ECU and
voltage is applied to the injector, with the ECU controlling
injection time.
The ECU determines proper ignition timing from the speed
sensor input. If the wide open throttle switch is engaged, the ECU
will deactivate the injector to prevent flooding.
ENGINE WARM-UP MODE
The ECU receives inputs from the CTS, MAT, MAP, speed, and
knock sensors. It also is informed of throttle, gear (automatic
transaxle models) and A/C control position.
The ECU provides a ground for the injector, precisely
controlling fuel delivery to the engine. The ECU also controls
ignition timing, engine idle speed and throttle stop angle. On
vehicles with manual transmissions, the up-shift indicator lamp is
controlled according to engine speed and load.
CRUISE MODE
During cruising speed, the ECU receives inputs from the CTS,
MAT, MAP, EGO, speed and knock sensors. It is also informed of
throttle, gear (automatic transaxle models), and A/C control position.\
The ECU provides a ground to the injector, precisely
controlling injector time. It also controls idle speed, throttle stop
angle, ignition timing, air/fuel mixture ratio and up-shift indicator
lamp.
DECELERATION MODE
During deceleration, the ECU receives inputs from the CTS,
proper increased enrichment for the next engine start. Idle speed is
nonadjustable.
EMISSION CONTROL
The ECU electrically controls Exhaust Gas Recirculation (EGR).\
An ECU-controlled solenoid valve is used to control EGR valve
function. This valve is located on the left inner fender panel and is
operated by the ECU in response to coolant temperature, throttle
position, and manifold pressure.
Under conditions of engine warm-up, engine idle, wide open
throttle, or rapid acceleration/deceleration, the solenoid valve is
energized, blocking vacuum to the EGR valve. At normal operating
temperatures with engine speed above idle, the solenoid valve is de-
energized, allowing normal EGR valve function.
NOTE: If the electrical connector is removed from the EGR solenoid,
EGR flow will be allowed at all times.
A/C CLUTCH CONTROL
The ECU controls the A/C compressor clutch to improve idle
quality. The A/C compressor clutch will be engaged or disengaged as
deemed necessary by the ECU through the A/C clutch relay.
SHIFT LIGHT CONTROL
The shift light system is used on all manual transmission
equipped vehicles. The ECU monitors coolant temperature, throttle
position, vehicle speed, and engine speed to control the shift light.
The ECU calculates what gear position the vehicle should be in and
uses this information to turn on the light. The light indicates the
best shift point to the driver for maximum fuel economy.
The light is tested when the ignition switch is turned on.
When the engine is started, the light should go out. A transmission-
mounted switch prevents the light from illuminating when the
transmission is shifted into high gear. The ECU turns the light off if
the shift to the next higher gear is not performed within 3-5 seconds
after light comes on.
DIAGNOSIS & TESTING
PRELIMINARY CHECKS
Before assuming that the ECU is faulty, the following systems
and components must be in good condition and operating properly:
* Air filter.
* All support systems and wiring.
* Battery connections and specific gravity.
* Compression pressure.
* Electrical and vacuum connections to components, sensors and
switches.
* Emission control devices.
* Ignition system.
* All vacuum and fuel line (hose) connections.
FUEL SYSTEM TEST
Fuel Pressure
1) Remove cap from pressure test port on fuel rail and