Page 10 of 36

3-8
04/14/2009 NP10-V8JLR: AJ133 5.0-Liter DFI V8 Engine
Technical Training
Engine Control Module
Engine Management System
ENGINE CONTROL MODULE
The ECM is supplied with battery voltage from a 5A fuse and an ignition supply from the ECM relays through\
a 15A
fuse, both located in the CJB. A regulator located within the ECM supplies a 5V current to internal compone\
nts such
as the microprocessor unit. Other components or functions requiring full\
battery voltage are controlled by external
relays or internal switching modules.
The microprocessor within the ECM receives signals from different components and control modules and uses a pro-
gram within the ECM software to interpret the signal information and issue signals which relate t\
o how the engine
components and functions should be controlled. The ECM communicates with other control modules via bidirectional
Controller Area Network (CAN) communication interfaces.
The ECM uses the following inputs and outputs:
Inputs
• Camshaft position (CMP) sensor
• Crankshaft position (CKP) sensor
• Fuel rail high-pressure sensor
• Mass air flow (MAF) sensors (2)
• Knock sensors (4)
• Engine coolant temperature (ECT) sensor
• Manifold absolute pressure (MAP) sensor
• Electronic throttle position sensor
• Accelerator pedal position (APP) sensor
• Cooling fan speed
• Upstream Universal Heated Exhaust Gas Oxygen (UHEGO) sensors (2)
• Brake switch
• Speed control cancel/suspend switch
• Intake air temperature (IAT) sensor (integrated into the MAF) (2)
• Ambient air temperature (AAT) sensor
• Engine oil level and temperature sensor
• Temperature and manifold absolute pressure (TMAP) sensor (SC only)
Outputs
• Throttle Actuator
• Coil-on-plug (COP) ignition coils (8)
• Upstream Universal Heated Exhaust Gas Oxygen (UHEGO) sensors (2)
• Downstream Heated Oxygen Sensors (HO2S) (2)
• Direct injection fuel injectors (8)
• Variable camshaft timing (VCT) solenoids (4)
• Camshaft profile switching (CPS) solenoids (2)
• Intake manifold tuning solenoid
• Carbon canister purge valve
• Fuel pump relay
• Starter relay
• A/C condenser fan relay
• ECM main relay viscous fan control
• Generator control
• Air flap solenoid (SC only)
• Pump control diagnostics
• Diagnostic Monitoring of Tank Leakage (DMTL)
Page 13 of 36

Technical Training
NP10-V8JLR: AJ133 5.0-Liter DFI V8 Engine 04/14/2009
3-11
Engine Management System
Crankshaft Position Sensor
CRANKSHAFT POSITION SENSOR
The crankshaft position (CKP) sensor is located on the
forward side of the transmission torque converter hous-
ing, in line with the engine flexplate.
The sensor is secured with a single bolt into the flywheel
housing. A reluctor ring is fitted to the outer diameter of
the crankshaft flexplate; the sensor reacts to the gaps in
the reluctor ring to determine engine speed and position
information.
The CKP sensor is an inductive-type sensor which pro-
duces a sinusoidal output voltage signal. This voltage is
induced by the proximity of the moving reluctor ring
gaps, which excite the magnetic flux around the tip of
the sensor when each gap passes.
The output voltage increases in magnitude and fre-
quency with the engine speed and, consequently, with
the speed at which the reluctor ring gaps pass the sensor.
NOTE:
The output is also dependent on the air gap
between the sensor and the teeth (the larger the gap, the
weaker the signal, the lower the output voltage).
DIRECTION OF ROTATION
FLEXPLATE
RELUCTOR
VOLTAGE OUTPUT S IGNAL
NP10V8094
Page 21 of 36

Technical TrainingNP10-V8JLR: AJ133 5.0-Liter DFI V8 Engine04/14/20093-19
Engine Management SystemThrottle Position Sensor
THROTTLE POSITION SENSOR
The engine torque is regulated via an electronic throttle
body (‘drive-by-wire’ system), where an electronic pedal
assembly determines throttle opening.
The throttle position (TP) sensor is mounted in the inte-
grated cover plate on the throttle body assembly. The
throttle body assembly is mounted at the top front of the
engine, in a similar position for both NA and SC variants.
This value is input into the ECM and the throttle is
opened to the correct angle by means of an electric direct
current (DC) motor integrated into the throttle body.
Movement of the motor is achieved by changing the
PWM signal to the DC motor, allowing it to be operated
in both directions.
The dual-output TP sensor in the throttle body is used to
determine the position of the throttle blade and the rate
of change in its angle.
A software strategy within the ECM enables the throttle
position to be calibrated each ignition cycle. When the
ignition is turned ON, the ECM commands the throttle
to open and close fully, thus performing a self-test and
calibration, learning the position of the full closed hard
stop position.Safety Precautions
CAUTION: Terminals in sensor and connec-
tor are gold-plated for corrosion/temperature
resistance – DO NOT probe.
Failure Modes
• Sensor open circuit
• Short circuit to battery voltage or ground
• If signal failure occurs the ECM will enter a limp home mode where the maximum engine speed is
2000 rpm
• Signal offset
• Vacuum leak
Failure Symptoms
• Poor engine running and throttle response
• Limp home mode – maximum 2000 rpm
• Emission control failure
• No closed loop idle speed control
NP10V8105
SpecificationFunction
Supply voltage 5V ± 0.2 V
Supply current Max. 10 mA/1 output
Tolerance – closed position ±150 mV Tolerance – WOT position ±150 mV
Operating temperature range -40°C – 160°C
(-40°F – 320°F)
Pin 1 Throttle motor valve open:
direction +
Pin 2 Throttle motor valve open:
direction –
Pin 3 Position sensor output 2
(Gold)
Pin 4 Ground (Gold)
Pin 5 Position sensor output 1
(Gold)
Pin 6 Position sensor 5V supply
(Gold)