INDEX FOR DTC
EC-13
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: June 20062007 VersaECM P0605 0605EC-427
ECT SEN/CIRC P0117 0117EC-200
ECT SEN/CIRC P0118 0118EC-200
ECT SENSOR P0125 0125 EC-212
ENG OVER TEMP P1217 1217EC-443
ENGINE SPEED SIG P0725 0725AT - 11 3
ETC ACTR P2119 2119EC-511
ETC FUNCTION/CIRC P2101 2101EC-499
ETC MOT P2118 2118EC-506
ETC MOT PWR P2100 2100EC-493
ETC MOT PWR P2103 2103EC-493
EVAP GROSS LEAK P0455 0455EC-398
EVAP PURG FLOW/MON P0441 0441EC-340
EVAP SMALL LEAK P0442 0442EC-346
EVAP SYS PRES SEN P0451 0451EC-382
EVAP SYS PRES SEN P0452 0452EC-385
EVAP SYS PRES SEN P0453 0453EC-391
EVAP VERY SML LEAK P0456 0456EC-406
FTT SEN/CIRCUIT P0182 0182EC-297
FTT SEN/CIRCUIT P0183 0183EC-297
FTT SENSOR P0181 0181EC-291
FUEL LEV SEN SLOSH P0460 0460EC-415
FUEL LEVEL SENSOR P0461 0461EC-417
FUEL LEVL SEN/CIRC P0462 0462EC-419
FUEL LEVL SEN/CIRC P0463 0463EC-419
FUEL SYS-LEAN-B1 P0171 0171EC-276
FUEL SYS-RICH-B1 P0172 0172EC-284
HO2S2 (B1) P0137 0137EC-248
HO2S2 (B1) P0138 0138EC-257
HO2S2 (B1) P0139 0139EC-267
HO2S2 HTR (B1) P0037 0037EC-166
HO2S2 HTR (B1) P0038 0038EC-166
IAT SEN/CIRCUIT P0112 0112EC-195
IAT SEN/CIRCUIT P0113 0113EC-195
IAT SENSOR P0127 0127EC-215
INPUT SPD SEN/CIRC P0715 0715EC-486
IN PULY SPEED P1715 1715EC-485 (A/T),
EC-486
(CVT)
INT/V TIM CONT-B1 P0011 0011EC-156
INT/V TIM V/CIR-B1 P0075 0075EC-173
ISC SYSTEM P0506 0506EC-423
ISC SYSTEM P0507 0507EC-425
KNOCK SEN/CIRC-B1 P0327 0327EC-315
Items
(CONSULT-II screen terms)DTC*1
Reference page
CONSULT-II
GST*
2ECM*3
EC-16Revision: June 2006
PRECAUTIONS
2007 Versa
PRECAUTIONSPFP:00001
Precautions for Supplemental Restraint System (SRS) “AIR BAG” and “SEAT
BELT PRE-TENSIONER”
UBS00QB3
The Supplemental Restraint System such as “AIR BAG” and “SEAT BELT PRE-TENSIONER”, used along
with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain
types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS
system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front
air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the SRS and SB section of this Service Man-
ual.
WAR NIN G:
To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death
in the event of a collision which would result in air bag inflation, all maintenance must be per-
formed by an authorized NISSAN/INFINITI dealer.
Improper maintenance, including incorrect removal and installation of the SRS, can lead to per-
sonal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air
Bag Module, see the SRS section.
Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this
Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or
harness connectors.
Precautions for Procedures without Cowl Top CoverUBS00RCH
When performing the procedure after removing cowl top cover, cover
the lower end of windshield with urethane, etc.
On Board Diagnostic (OBD) System of Engine and A/T, CVTUBS00QB4
The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the
driver of a malfunction causing emission deterioration.
CAUTION:
Be sure to turn the ignition switch OFF and disconnect the battery ground cable before any repair
or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will
cause the MIL to light up.
Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
dirt, bent terminals, etc.)
Certain systems and components, especially those related to OBD, may use a new style slide-
locking type harness connector. For description and how to disconnect, refer to PG-68, "
HAR-
NESS CONNECTOR" .
Be sure to route and secure the harnesses properly after work. The interference of the harness
with a bracket, etc. may cause the MIL to light up due to the short circuit.
Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
may cause the MIL to light up due to the malfunction of the fuel injection system, etc.
Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and
TCM (Transmission control module) before returning the vehicle to the customer.
PIIB3706J
PRECAUTIONS
EC-17
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: June 20062007 Versa
PrecautionUBS00QB5
Always use a 12 volt battery as power source.
Do not attempt to disconnect battery cables while engine is
running.
Before connecting or disconnecting the ECM harness con-
nector, turn ignition switch OFF and disconnect negative
battery cable. Failure to do so may damage the ECM
because battery voltage is applied to ECM even if ignition
switch is turned OFF.
Before removing parts, turn ignition switch OFF and then
disconnect negative battery cable.
Do not disassemble ECM.
If battery cable is disconnected, the memory will return to
the initial ECM values.
The ECM will now start to self-control at its initial values.
Engine operation can vary slightly when the cable is dis-
connected. However, this is not an indication of a malfunc-
tion. Do not replace parts because of a slight variation.
If the battery is disconnected, the following emission-
related diagnostic information will be lost within 24 hours.
–Diagnostic trouble codes
–1st trip diagnostic trouble codes
–Freeze frame data
–1st trip freeze frame data
–System readiness test (SRT) codes
–Test values
When connecting ECM harness connector, fasten (B) it
securely with a lever (1) as far as it will go as shown in the
figure.
–ECM (2)
–Loosen (A)
When connecting or disconnecting pin connectors into or
from ECM, take care not to damage pin terminals (bend or
break).
Make sure that there are not any bends or breaks on ECM
pin terminal, when connecting pin connectors.
Securely connect ECM harness connectors.
A poor connection can cause an extremely high (surge)
voltage to develop in coil and condenser, thus resulting in
damage to ICs.
Keep engine control system harness at least 10 cm (4 in)
away from adjacent harness, to prevent engine control sys-
tem malfunctions due to receiving external noise, degraded
operation of ICs, etc.
Keep engine control system parts and harness dry.
SEF 2 89 H
PBIA9222J
PBIB2947E
PBIB0090E
PRECAUTIONS
EC-19
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: June 20062007 Versa
Do not operate fuel pump when there is no fuel in lines.
Tighten fuel hose clamps to the specified torque.
–Fuel level sensor unit and fuel pump (1)
–Fuel pressure regulator (2)
–Fuel level sensor (3)
–Fuel tank temperature sensor (4)
Do not depress accelerator pedal when starting.
Immediately after starting, do not rev up engine unneces-
sarily.
Do not rev up engine just prior to shutdown.
When installing C.B. ham radio or a mobile phone, be sure
to observe the following as it may adversely affect elec-
tronic control systems depending on installation location.
–Keep the antenna as far as possible from the electronic
control units.
–Keep the antenna feeder line more than 20 cm (8 in) away
from the harness of electronic controls.
Do not let them run parallel for a long distance.
–Adjust the antenna and feeder line so that the standing-
wave radio can be kept smaller.
–Be sure to ground the radio to vehicle body.
BBIA0704E
SEF 7 09 Y
SEF 7 08 Y
PREPARATION
EC-21
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: June 20062007 Versa
Commercial Service ToolsUBS00PJQ
Tool number
(Kent-Moore No.)
Tool nameDescription
Leak detector
i.e.: (J-41416)Locating the EVAP leak
EVAP service port
adapter
i.e.: (J-41413-OBD)Applying positive pressure through EVAP service
port
Fuel filler cap adapter
i.e.: (MLR-8382)Checking fuel tank vacuum relief valve opening
pressure
Socket wrench Removing and installing engine coolant tempera-
ture sensor
Oxygen sensor thread
cleaner
i.e.: (J-43897-18)
(J-43897-12)Reconditioning the exhaust system threads before
installing a new oxygen sensor. Use with anti-
seize lubricant shown below.
a: 18 mm diameter with pitch 1.5 mm for Zirco-
nia Oxygen Sensor
b: 12 mm diameter with pitch 1.25 mm for Tita-
nia Oxygen Sensor
Anti-seize lubricant
i.e.: (Permatex
TM
133AR or equivalent
meeting MIL specifica-
tion MIL-A-907)Lubricating oxygen sensor thread cleaning tool
when reconditioning exhaust system threads.
S-NT703
S-NT704
S-NT815
S-NT705
AEM488
S-NT779
EC-22Revision: June 2006
ENGINE CONTROL SYSTEM
2007 Versa
ENGINE CONTROL SYSTEMPFP:23710
System DiagramUBS00PJR
PBIB3331E
ENGINE CONTROL SYSTEM
EC-23
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: June 20062007 Versa
Multiport Fuel Injection (MFI) SystemUBS00PJS
INPUT/OUTPUT SIGNAL CHART
*1: This sensor is not used to control the engine system under normal conditions.
*2: This signal is sent to the ECM through CAN communication line.
*3: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of
time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the
ECM memory. The program value is preset by engine operating conditions. These conditions are determined
by input signals (for engine speed and intake air) from the crankshaft position sensor (POS), camshaft position
sensor (PHASE) and the mass air flow sensor.
VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION
In addition, the amount of fuel injected is compensated to improve engine performance under various operat-
ing conditions as listed below.
During warm-up
When starting the engine
During acceleration
Hot-engine operation
When selector lever is changed from N to D (A/T and CVT models)
High-load, high-speed operation
During deceleration
During high engine speed operation
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Engine speed*
3
Piston position
Fuel injection
& mixture ratio
controlFuel injector Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Air fuel ratio (A/F) sensor 1 Density of oxygen in exhaust gas
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Park/neutral position (PNP) switch Gear position
Battery
Battery voltage*
3
Knock sensor Engine knocking condition
EPS control unit
Power steering operation*
2
Heated oxygen sensor 2*1Density of oxygen in exhaust gas
Air conditioner switch
Air conditioner operation*
2
Wheel sensor
Vehicle speed*2
EC-24Revision: June 2006
ENGINE CONTROL SYSTEM
2007 Versa
MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)
The mixture ratio feedback system provides the best air/fuel mixture ratio for driveability and emission control.
The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses air
fuel ratio (A/F) sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The
ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about air
fuel ratio (A/F) sensor 1, refer to EC-227, "
DTC P0131 A/F SENSOR 1" . This maintains the mixture ratio
within the range of stoichiometric (ideal air/fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching
characteristics of air fuel ratio (A/F) sensor 1 shift, the air/fuel ratio is controlled to stoichiometric by the signal
from heated oxygen sensor 2.
Open Loop Control
The open loop system condition refers to when the ECM detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.
Deceleration and acceleration
High-load, high-speed operation
Malfunction of air fuel ratio (A/F) sensor 1 or its circuit
Insufficient activation of air fuel ratio (A/F) sensor 1 at low engine coolant temperature
High engine coolant temperature
During warm-up
After shifting from N to D (A/T and CVT models)
When starting the engine
MIXTURE RATIO SELF-LEARNING CONTROL
The mixture ratio feedback control system monitors the mixture ratio signal transmitted from air fuel ratio (A/F)
sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to
the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as orig-
inally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic
changes during operation (i.e., fuel injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value compared against the basic injection duration. Fuel trim
includes short term fuel trim and long term fuel trim.
“Short term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical
value. The signal from air fuel ratio (A/F) sensor 1 indicates whether the mixture ratio is RICH or LEAN com-
pared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and
an increase in fuel volume if it is lean.
“Long term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation
of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences,
wear over time and changes in the usage environment.
PBIB3020E