EC-450
[VQ35DE]
DTC P0456 EVAP CONTROL SYSTEM
Revision: 2006 December 2006 FX35/FX45
DTC P0456 EVAP CONTROL SYSTEMPFP:14950
On Board Diagnosis LogicNBS003S2
This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume
control solenoid valve, using the intake manifold vacuum in the same way as conventional EVAP small leak
diagnosis.
If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.
If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.
If ECM judges there are no leaks, the diagnosis will be OK.
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0456
0456 Evaporative emission
control system very
small leak (negative
pressure check)
EVAP system has a very small leak.
EVAP system does not operate prop-
erly.
Incorrect fuel tank vacuum relief valve
Incorrect fuel filler cap used
Fuel filler cap remains open or fails to close.
Foreign matter caught in fuel filler cap.
Leak is in line between intake manifold and EVAP
canister purge volume control solenoid valve.
Foreign matter caught in EVAP canister vent con-
trol valve.
EVAP canister or fuel tank leaks
EVAP purge line (pipe and rubber tube) leaks
EVAP purge line rubber tube bent
Loose or disconnected rubber tube
EVAP canister vent control valve and the circuit
EVAP canister purge volume control solenoid
valve and the circuit
Fuel tank temperature sensor
O-ring of EVAP canister vent control valve is miss-
ing or damaged
EVAP canister is saturated with water
EVAP control system pressure sensor
Refueling EVAP vapor cut valve
ORVR system leaks
Fuel level sensor and the circuit
Foreign matter caught in EVAP canister purge vol-
ume control solenoid valve
PBIB1026E
EC-458
[VQ35DE]
DTC P0456 EVAP CONTROL SYSTEM
Revision: 2006 December 2006 FX35/FX45
13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION
Without CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Stop engine.
3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
4. Start engine and let it idle for at least 80 seconds.
5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.
OK or NG
OK >> GO TO 16.
NG >> GO TO 14.
14. CHECK VACUUM HOSE
Check vacuum hoses for clogging or disconnection. Refer to EC-107, "
Vacuum Hose Drawing" .
OK or NG
OK >> GO TO 15.
NG >> Repair or reconnect the hose.
15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Refer to EC-410, "
Component Inspection" .
OK or NG
OK >> GO TO 16.
NG >> Replace EVAP canister purge volume control solenoid valve.
16. CHECK FUEL TANK TEMPERATURE SENSOR
Refer to EC-333, "
Component Inspection" .
OK or NG
OK >> GO TO 17.
NG >> Replace fuel level sensor unit.
17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR
Refer to EC-433, "
Component Inspection" .
OK or NG
OK >> GO TO 18.
NG >> Replace EVAP control system pressure sensor.
18. CHECK EVAP PURGE LINE
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection.
Refer to EC-40, "
EVAPORATIVE EMISSION LINE DRAWING" .
OK or NG
OK >> GO TO 19.
NG >> Repair or reconnect the hose.
19. CLEAN EVAP PURGE LINE
Clean EVAP purge line (pipe and rubber tube) using air blower.
>> GO TO 20.
EC-462
[VQ35DE]
DTC P0461 FUEL LEVEL SENSOR
Revision: 2006 December 2006 FX35/FX45
DTC P0461 FUEL LEVEL SENSORPFP:25060
Component DescriptionNBS003SB
The fuel level sensor is mounted in the fuel level sensor unit. The
sensor detects a fuel level in the fuel tank and transmits a signal to
the “unified meter and A/C amp.”. The “unified meter and A/C amp.”
sends the fuel level sensor signal to the ECM through CAN commu-
nication line.
It consists of two parts, one is mechanical float and the other is vari-
able resistor. Fuel level sensor output voltage changes depending on
the movement of the fuel mechanical float.
On Board Diagnosis LogicNBS003SC
NOTE:
If DTC P0461 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC
U1000, U1001. Refer to EC-156, "
DTC U1000, U1001 CAN COMMUNICATION LINE" .
If DTC P0461 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010.
Refer to EC-159, "
DTC U1010 CAN COMMUNICATION" .
Driving long distances naturally affect fuel gauge level.
This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has
been driven.
Overall Function CheckNBS003SD
Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip
DTC might not be confirmed.
WARNING:
When performing following procedure, be sure to observe the handling of the fuel. Refer to FL-10,
"FUEL TANK" .
TESTING CONDITION:
Before starting overall function check, preparation of draining fuel and refilling fuel is required.
WITH CONSULT-II
NOTE:
Start from step 10, if it is possible to confirm that the fuel cannot be drained by 30 (7-7/8 US gal, 6-5/
8 Imp gal) in advance.
1. Prepare a fuel container and a spare hose.
2. Release fuel pressure from fuel line, refer to EC-86, "
FUEL PRESSURE RELEASE" .
3. Remove the fuel feed hose on the fuel level sensor unit.
4. Connect a spare fuel hose where the fuel feed hose was removed.
5. Turn ignition switch OFF and wait at least 10 seconds then turn ON.
6. Select “FUEL LEVEL SE” in “DATA MONITOR” mode with CONSULT-II.
PBIB1569E
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0461
0461 Fuel level sensor circuit
range/performance The output signal of the fuel level sensor does
not change within the specified range even
though the vehicle has been driven a long dis-
tance.
Harness or connectors
(CAN communication line is open or
shorted)
Harness or connectors
(Fuel level sensor circuit is open or
shorted)
Unified meter and A/C amp.
Fuel level sensor
DTC P0461 FUEL LEVEL SENSOR EC-463
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
7. Check “FUEL LEVEL SE” output voltage and note it.
8. Select “FUEL PUMP” in “ACTIVE TEST” mode with CONSULT- II.
9. Touch ON and drain fuel approximately 30 (7-7/8 US gal, 6-5/ 8 Imp gal) and stop it.
10. Check “FUEL LEVEL SE” output voltage and note it.
11. Fill fuel into the fuel tank for 30 (7-7/8 US gal, 6-5/8 Imp gal).
12. Check “FUEL LEVEL SE” output voltage and note it.
13. Confirm whether the voltage changes more than 0.03V during step 7 to 10 and 10 to 12.
If NG, go to EC-463, "
Diagnostic Procedure" .
WITH GST
NOTE:
Start from step 8, if it is possible to confirm that the fuel cannot be drained by 30 (7-7/8 US gal, 6-5/8
Imp gal) in advance.
1. Prepare a fuel container and a spare hose.
2. Release fuel pressure from fuel line. Refer to EC-86, "
FUEL PRESSURE RELEASE" .
3. Remove the fuel feed hose on the fuel level sensor unit.
4. Connect a spare fuel hose where the fuel feed hose was removed.
5. Turn ignition switch ON.
6. Drain fuel by 30 (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
7. Confirm that the fuel gauge indication varies.
8. Fill fuel into the fuel tank for 30 (7-7/8 US gal, 6-5/8 Imp gal).
9. Confirm that the fuel gauge indication varies.
10. If NG, go to EC-463, "
Diagnostic Procedure" .
Diagnostic ProcedureNBS003SE
1. CHECK DTC WITH “UNIFIED METER AND A/C AMP.”
Refer to DI-31, "
SELF-DIAG RESULTS" .
OK or NG
OK >> GO TO 2.
NG >> Go to DI-21, "
Fuel Level Sensor Signal Inspection" .
2. CHECK INTERMITTENT INCIDENT
Refer to EC-148, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
>> INSPECTION END
Removal and InstallationNBS003SF
FUEL LEVEL SENSOR
Refer to FL-4, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .
SEF195Y
EC-604
[VQ35DE]
DTC P2A00, P2A03 A/F SENSOR 1
Revision: 2006 December 2006 FX35/FX45
DTC P2A00, P2A03 A/F SENSOR 1PFP:22693
Component DescriptionNBS003VH
The air fuel ratio (A/F) sensor is a planar dual-cell limit current sen-
sor. The sensor element of the air fuel ratio (A/F) sensor is the com-
bination of a Nernst concentration cell (sensor cell) with an oxygen-
pump cell, which transports ions. It has a heater in the element.
The sensor is capable of precise measurement = 1, but also in the
lean and rich range. Together with its control electronics, the sensor
outputs a clear, continuous signal throughout a wide range (0.7 < < air).
The exhaust gas components diffuse through the diffusion gap at the
electrode of the oxygen pump and Nernst concentration cell, where
they are brought to thermodynamic balance.
An electronic circuit controls the pump current through the oxygen-
pump cell so that the composition of the exhaust gas in the diffusion
gap remains constant at = 1. Therefore, the air fuel ratio (A/F) sen-
sor is able to indicate air/fuel ratio by this pumping of current. In
addition, a heater is integrated in the sensor to ensure the required
operating temperature of 700 - 800 °C (1,292 - 1,472 °F).
CONSULT-II Reference Value in Data Monitor ModeNBS003VI
Specification data are reference values.
On Board Diagnosis LogicNBS003VJ
To judge the malfunction, the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is mon-
itored not to be shifted to LEAN side or RICH side.
SEF579Z
SEF580Z
MONITOR ITEM CONDITION SPECIFICATION
A/F SEN1 (B1)
A/F SEN1 (B2)
Engine: After warming up Maintaining engine speed at
2,000 rpm Fluctuates around 1.5V
DTC No. Trouble diagnosis name DTC detecting condition Possible Cause
P2A00
2A00
(Bank 1) Air fuel ratio (A/F) sensor 1
lean shift monitoring
The output voltage computed by ECM from the
air fuel ratio (A/F) sensor 1 signal is shifted to
the lean side for a specified period.
The A/F signal computed by ECM from the air
fuel ratio (A/F) sensor 1 signal is shifted to the
rich side for a specified period.
Air fuel ratio (A/F) sensor 1
Air fuel ratio (A/F) sensor 1 heater
Fuel pressure
Fuel injector
Intake air leaks
P2A03
2A03
(Bank 2)
FUEL PUMP EC-637
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
Specification data are reference values and are measured between each terminal and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-
age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
Diagnostic ProcedureNBS003ZN
1. CHECK OVERALL FUNCTION
1. Turn ignition switch ON.
2. Pinch fuel feed hose with two fingers.
OK or NG
OK >> INSPECTION END
NG >> GO TO 2.
2. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-I
1. Turn ignition switch OFF.
2. Disconnect ECM harness connector.
3. Turn ignition switch ON.
4. Check voltage between ECM terminal 113 and ground with CONSULT-II or tester.
OK or NG
OK >> GO TO 5.
NG >> GO TO 3.
TER-
MINAL NO. WIRE
COLOR ITEM CONDITION DATA (DC Voltage)
113 GY/R Fuel pump relay [Ignition switch: ON]
For 1 second after turning ignition switch ON
[Engine is running] 0 - 1.5V
[Ignition switch: ON]
More than 1 second after turning ignition
switch ON BATTERY VOLTAGE
(11 - 14V)
Fuel pressure pulsation should be felt on the fuel feed
hose for 1 second after ignition switch is turned ON.
PBIB1612E
Voltage: Battery voltage
PBIB1187E
EC-660
[VQ35DE]
IGNITION SIGNAL
Revision: 2006 December 2006 FX35/FX45
Component InspectionNBS003ZC
IGNITION COIL WITH POWER TRANSISTOR
CAUTION:
Do the following procedure in the place where ventilation is good without the combustible.
1. Turn ignition switch OFF.
2. Disconnect ignition coil harness connector.
3. Check resistance between ignition coil terminals as follows.
4. If NG, Replace ignition coil with power transistor. If OK, go to next step.
5. Turn ignition switch OFF.
6. Reconnect all harness connectors disconnected.
7. Remove fuel pump fuse in IPDM E/R to release fuel pressure.
NOTE:
Do not use CONSULT-II to release fuel pressure, or fuel pres-
sure applies again during the following procedure.
8. Start engine.
9. After engine stalls, crank it two or three times to release all fuel pressure.
10. Turn ignition switch OFF.
11. Remove ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
12. Remove ignition coil and spark plug of the cylinder to be checked.
13. Crank engine for 5 seconds or more to remove combustion gas in the cylinder.
14. Connect spark plug and harness connector to ignition coil.
15. Fix ignition coil using a rope etc. with gap of 13 - 17 mm between the edge of the spark plug and grounded metal portion
as shown in the figure.
16. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded part.
CAUTION:
Do not approach to the spark plug and the ignition coil
within 50cm. Be careful not to get an electrical shock
while checking, because the electrical discharge voltage
becomes 20kV or more.
It might cause to damage the ignition coil if the gap of more than 17 mm is taken.
NOTE:
When the gap is less than 13 mm or less, the spark might be generated even if the coil is malfunc-
tioning.
17. If NG, Replace ignition coil with power transistor.
Terminal No. (Polarity) Resistance Ω [at 25 °C (77 °F)]
1 and 2 Except 0 or ∞
1 and 3 Except 0
2 and 3
Spark should be generated.
PBIB0847E
PBIB1603E
PBIB2325E
EC-674
[VQ35DE]
SERVICE DATA AND SPECIFICATIONS (SDS)
Revision: 2006 December 2006 FX35/FX45
SERVICE DATA AND SPECIFICATIONS (SDS)PFP:00030
Fuel PressureNBS0040H
Idle Speed and Ignition TimingNBS0040I
*1: Under the following conditions:
Air conditioner switch: OFF
Electric load: OFF (Lights, heater fan & rear window defogger)
Steering wheel: Kept in straight-ahead position
Calculated Load ValueNBS0040J
Mass Air Flow SensorNBS0040K
*: Engine is warmed up to normal operating temperature and running under no load.
Intake Air Temperature SensorNBS0040L
Engine Coolant Temperature SensorNBS0040M
Air Fuel Ratio (A/F) Sensor 1 HeaterNBS0040N
Heated Oxygen sensor 2 HeaterNBS0040O
Crankshaft Position Sensor (POS)NBS0040P
Refer to EC-367, "Component Inspection" .
Camshaft Position Sensor (PHASE)NBS0040Q
Refer to EC-376, "Component Inspection" .
Throttle Control MotorNBS0040R
Fuel pressure at idling kPa (kg/cm2 , psi) Approximately 350 (3.57, 51)
Target idle speed
No load*1 (in P or N position) 650
±50 rpm
Air conditioner: ON In P or N position 700 rpm or more
Ignition timing In P or N position 15 ° ± 5 ° BTDC
Calculated load value% (Using CONSULT-II or GST)
At idle 5 - 35
At 2,500 rpm 5 - 35
Supply voltageBattery voltage (11 - 14V)
Output voltage at idle 1.0 - 1.2V*
Mass air flow (Using CONSULT-II or GST) 2.0 - 6.0 g·m/sec at idle*
7.0 - 20.0 g·m/sec at 2,500 rpm*
Temperature °C ( °F) Resistance k Ω
25 (77) 1.800 - 2.200
80 (176) 0.283 - 0.359
Temperature °C ( °F) Resistance k Ω
20 (68) 2.1 - 2.9
50 (122) 0.68 - 1.00
90 (194) 0.236 - 0.260
Resistance [at 25°C (77 °F)] 2.3 - 4.3 Ω
Resistance [at 25°C (77 °F)] 5.0 - 7.0 Ω
Resistance [at 25°C (77 °F)] Approximately 1 - 15 Ω