ENGINE DRIVEABILITY AND EMISSIONS 6E–55
Low or high spark plug installation torque or improper
seating can result in the spark plug running too hot and
can cause excessive center electrode wear. The plug
and the cylinder head seats must be in good contact for
proper heat transfer and spark plug cooling. Dirty or
damaged threads in the head or on the spark plug can
keep it from seating even though the proper torque is
applied. Once spark plugs are properly seated, tighten
them to the torque shown in the Specifications Table.
Low torque may result in poor contact of the seats due
to a loose spark plug. Over tightening may cause the
spark plug shell to be stretched and will result in poor
contact between the seats. In ex treme cases, ex haust
blow-by and damage beyond simple gap wear may
occur.
Cracked or broken insulators may be the result of
improper installation, damage during spark plug re-
gapping, or heat shock to the insulator material. Upper
insulators can be broken when a poorly fitting tool is
used during installation or removal, when the spark plug
is hit from the outside, or is dropped on a hard surface.
Cracks in the upper insulator may be inside the shell
and not visible. Also, the breakage may not cause
problems until oil or moisture penetrates the crack later.A broken or cracked lower insulator tip (around the
center electrode) may result from damage during re-
gapping or from “heat shock” (spark plug suddenly
operating too hot).
Damage during re-gapping can happen if the gapping
tool is pushed against the center electrode or the
insulator around it, causing the insulator to crack.
When re-gapping a spark plug, make the adjustment
by bending only the ground side terminal, keeping the
tool clear of other parts.
“Heat shock” breakage in the lower insulator tip
generally occurs during several engine operating
conditions (high speeds or heavy loading) and may
be caused by over-advanced timing or low grade
fuels. Heat shock refers to a rapid increase in the tip
temperature that causes the insulator material to
crack.
Spark plugs with less than the recommended amount of
service can sometimes be cleaned and re-gapped, then
6E–56 ENGINE DRIVEABILITY AND EMISSIONS
returned to service. However, if there is any doubt about
the serviceability of a spark plug, replace it. Spark plugs
with cracked or broken insulators should always be
replaced.
6E–234 ENGINE DRIVEABILITY AND EMISSIONS
12 Visually/physically inspect the secondary ignition
wires. Check for the following conditions:
Verify that all ignition wire resistance are less than
the specified value.
Verify that ignition wires are correctly routed to
eliminate cross-fitting.
Verify that ignition wires are not arcing to ground.
Spraying the secondary ignition wires with a light
mist of water may help locate an intermittent
problem.
Was a problem found?#1 cyl. 4.4k
#2 cyl. 3.6k
#3 cyl. 3.1k
#4 cyl. 2.8kVerify repair Go to Step 13
13 1. Disconnect the spark plug high tension cable from
No.1 spark plug.
2. Install a spark tester at the end of the
disconnected ignition coil.
3. Clip the spark tester to a good ground.
4. Observe the spark tester while the engine is
cranking.
Was a crisp blue spark observed? (Only one or two
sparks followed by no result is considered the same
as “No Spark”.)—Go to Step 21Go to Step 14
14 1. Disconnect the ignition coil harness connector.
2. Check for an open or short circuit between the
ignition coil and the ECM.
Was a problem found?—Verify repair Go to Step 15
15 1. Ignition “On”.
2. Using a Digital Voltmeter (DVM) check the ignition
wire coil at the ignition coil harness connector.
Was the voltage equal to the specified value?Battery
voltage Go to Step 16Verify repair
16 1. Ignition “Off”.
2. With DVM, check for an open in the ground wire at
the ignition coil harness connector.
Was the ground wire OK?—Go to Step 17Verify repair
17 Replace the ignition coil, verify the repair.
Attempt to start the engine.
Is there still a problem?—Go to Step 18Verify repair
18 Use an ohmmeter to check the ignition coil primary
winding resistance.
Was the primary winding resistance approximately
equal to the specified value? 0.8-18kGo to Step 19Go to Step 20
19 Use an ohmmeter to check the ignition coil secondary
winding resistance.
Was the primary winding resistance hear around the
to the specified value? 2.5kGo to Step 21Go to Step 20
20 Replace the ignition coil.—Veri fy repai r—
21 1. Remove the spark plugs from all cylinders.
2. Visually inspect the spark plug electrodes.
3. Replace any spark plugs with loose or missing
electrodes or cracked insulators.
Did your inspection reveal any spark plugs exhibiting
ex cessive fouling?—Correct the
fouling
condition Go to Step 22 Step Action Value(s) Yes No
ENGINE DRIVEABILITY AND EMISSIONS 6E–237
7 1. Using a Tech 2, display the engine coolant
temperature and note the value.
2. Check the resistance of the engine coolant
temperature sensor.
Is the actual resistance near the resistance value in
the chart for the temperature that was noted?
—Go to Step 8Replace the
ECT sensor.
Verify repair
8 1. Using a Tech 2, display the MAP sensor value in
comparison with atmosphere temperature.
2. Check for a faulty, plugged, or incorrectly installed
MAP sensor.
Was the problem found?—Verify repair Go to Step 9
9 Visually/physically inspect all spark plug high-tension
cables. Check for the following conditions:
Verify that the resistance of all spark plug high-
tension cables are less than the specified value.
Verify that the all spark plug high-tension cables are
correctly fitted to eliminate cross-fitting.
Verify that the all spark plug high-tension cables are
not arcing to ground.
Spraying the spark plug high-tension cables with a
light mist of water may help locate an intermittent
problem.
Was a problem found?#1 cyl. 4.4k
#2 cyl. 3.6k
#3 cyl. 3.1k
#4 cyl. 2.8kVerify repair Go to Step 10
10 Check for proper ignition voltage output with a spark
tester.
Was the problem found?—Verify repair Go to Step 11
11 1. Remove the spark plugs and check for gas or oil
fouling cracks, wear, improper gap, burned
electrodes, heavy deposits, or improper heat
range.
2. If spark plugs are fouled, the cause of fouling must
be determined before replacing the spark plugs.
Was a problem found?—Verify repair Go to Step 12
12 Check for a loose ignition control module ground.
Was a problem found?—Verify repair Go to Step 13
13 1. Check the ignition coil secondary resistance.
2. Replace the coil if it is greater than the specified
resistance.
Did the coil require replacement? 2.5kVerify repair Go to Step 14 Step Action Value(s) Yes No
Temperature (°C) Resistance () (Approximately)
-20 26740
09120
20 3500
40 1464
60 664
80 333
100 175
120 102
6E–240 ENGINE DRIVEABILITY AND EMISSIONS
7 1. Using a Tech 2, display the engine coolant
temperature and note the value.
2. Check the resistance of the engine coolant
temperature sensor.
Is the actual resistance near the resistance value in
the chart for the temperature that was noted?
—Go to Step 8Replace the
ECT sensor.
Verify repair
8 1. Using a Tech 2, display the MAP sensor value in
comparison with atmosphere temperature.
2. Check for a faulty, plugged, or incorrectly installed
MAP sensor.
Was the problem found?—Verify repair Go to Step 9
9 Using Tech 2, monitor throttle position with the engine
idling.
Is the throttle position at the specified value and
steady?
0% Go to Step 10Refer to
Diagnostic
Trouble Code
P0123 for
further
diagnosis
10 Check for proper ignition voltage output with the spark
tester.
Was a problem found?—Verify repair Go to Step 11
11 1. Remove the spark plugs and check for gas or oil
fouling cracks, wear, improper gap, burned
electrodes, heavy deposits, or improper heat
range.
2. If spark plugs are fouled, the cause of fouling must
be determined before replacing the spark plugs.
Was a problem found?—Verify repair Go to Step 12
12 Check for a loose ignition control module ground.
Was a problem found?—Verify repair Go to Step 13
13 Check items that can cause the engine to run rich.
Refer to DTC P1167 “Fuel Supply System Rich During
Deceleration Fuel Cut Off”.
Was a problem found?—Verify repair Go to Step 14
14 Check items that can cause the engine to run lean.
Refer to DTC P1171 “Fuel Supply System Lean
During Power Enrichment”.
Was a problem found?—Verify repair Go to Step 15
15 Check the injector connectors, if any of the injectors
are connected any incorrect cylinder, correct as
necessary.
Was a problem found?—Verify repair Go to Step 16
16 1. Check for faulty engine mounts.
2. If a problem is found, repair as necessary.
Was a problem found?—Verify repair Go to Step 17 Step Action Value(s) Yes No
Temperature (°C) Re sista nce () (Appro x imately)
-20 26740
09120
20 3500
40 1464
60 664
80 333
100 175
120 102
ENGINE DRIVEABILITY AND EMISSIONS 6E–243
9 Check the fuel pressure. Refer to 6E-108 pageFuel
System Diagnosis.
Was a problem found?—Verify repair Go to Step 10
10 Monitor “B1S1 (Bank 1 Sensor 1) Status” on the Tech
2.
Is the “B1S1 (Bank 1 Sensor 1) Status” in the rich
condition?—Verify repair Go to Step 11
11 Check items that can cause the engine to run rich.
Refer to DTC P1167 “Fuel Supply System Rich During
Deceleration Fuel Cut Off”.
Was a problem found?—Verify repair Go to Step 12
12 Check items that can cause the engine to run lean.
Refer to DTC P1171 “Fuel Supply System Lean
During Power Enrichment”.
Was a problem found?—Verify repair Go to Step 13
13 Check for proper ignition voltage output with the spark
tester.
Was a problem found?—Verify repair Go to Step 14
14 Check for a loose ignition control module ground.
Was a problem found?—Verify repair Go to Step 15
15 Visually/physically inspect all spark plug high-tension
cables. Check for the following conditions:
Verify that the resistance of all spark plug high-
tension cables are less than the specified value.
Verify that the all spark plug high-tension cables are
correctly fitted to eliminate cross-fitting.
Verify that the all spark plug high-tension cables are
not arcing to ground.
Spraying the spark plug high-tension cables with a
light mist of water may help locate an intermittent
problem.
Was a problem found?#1 cyl. 4.4k
#2 cyl. 3.6k
#3 cyl. 3.1k
#4 cyl. 2.8kVerify repair Go to Step 16
16 1. Check the ignition coil secondary resistance.
2. Replace the coil if it is greater than the specified
resistance.
Did the coil require replacement? 2.5kVerify repair Go to Step 17
17 1. Remove the spark plugs and check for gas or oil
fouling cracks, wear, improper gap, burned
electrodes, heavy deposits, or improper heat
range.
2. If spark plugs are fouled, the cause of fouling must
be determined before replacing the spark plugs.
Was a problem found?—Verify repair Go to Step 18
18 1. Check the injector connectors.
2. If any of the connectors are connected at an
improper cylinder, connect as necessary.
Was a problem found?—Verify repair Go to Step 19
19 Check the ECM grounds to verify that they are clean
and tight. Refer to the ECM wiring diagrams.
Was a problem found?—Verify repair Go to Step 20
20 Visually/physically check the vacuum hose for splits,
kinks and proper connections and routing.
Was a problem found?—Verify repair Go to Step 21 Step Action Value(s) Yes No
6E–246 ENGINE DRIVEABILITY AND EMISSIONS
10 Monitor “B1S1 (Bank 1 Sensor 1) Status” on the Tech
2.
Is the “B1S1 (Bank 1 Sensor 1) Status” in the rich
condition?—Go to Step 11Go to Step 12
11 Check items that can cause the engine to run rich.
Refer to DTC P1167 “Fuel Supply System Rich During
Deceleration Fuel Cut Off”.
Was a problem found?—Verify repair Go to Step 12
12 Check items that can cause the engine to run lean.
Refer to DTC P1171 “Fuel Supply System Lean
During Power Enrichment”.
Was a problem found?—Verify repair Go to Step 13
13 Check for proper ignition voltage output with the spark
tester.
Was a problem found?—Verify repair Go to Step 14
14 Check for a loose ignition control module ground.
Was a problem found?—Verify repair Go to Step 15
15 Visually/physically inspect all spark plug high-tension
cables. Check for the following conditions:
Verify that the resistance of all spark plug high-
tension cables are less than the specified value.
Verify that the all spark plug high-tension cables are
correctly fitted to eliminate cross-fitting.
Verify that the all spark plug high-tension cables are
not arcing to ground.
Spraying the spark plug high-tension cables with a
light mist of water may help locate an intermittent
problem.
Was a problem found?#1 cyl. 4.4k
#2 cyl. 3.6k
#3 cyl. 3.1k
#4 cyl. 2.8kVerify repair Go to Step 16
16 1. Check the ignition coil secondary resistance.
2. Replace the coil if it is greater than the specified
resistance.
Did the coil require replacement? 2.5kVerify repair Go to Step 17
17 1. Remove the spark plugs and check for gas or oil
fouling cracks, wear, improper gap, burned
electrodes, heavy deposits, or improper heat
range.
2. If spark plugs are fouled, the cause of fouling must
be determined before replacing the spark plugs.
Was a problem found?—Verify repair Go to Step 18
18 Check the ECM grounds to verify that they are clean
and tight. Refer to the ECM wiring diagrams.
Was a problem found?—Verify repair Go to Step 19
19 Visually/physically check the vacuum hose for splits,
kinks and proper connections and routing.
Was a problem found?—Verify repair Go to Step 20 Step Action Value(s) Yes No
ENGINE DRIVEABILITY AND EMISSIONS 6E–249
10 Check items that can cause the engine to run rich.
Refer to DTC P1167 “Fuel Supply System Rich During
Deceleration Fuel Cut Off”.
Was a problem found?—Verify repair Go to Step 11
11 Monitor “B1S1 (Bank 1 Sensor 1) Status” on the Tech
2.
Is the “B1S1 (Bank 1 Sensor 1) Status” in the lean
condition?—Go to Step 12Go to Step 13
12 Check items that can cause the engine to run lean.
Refer to DTC P1171 “Fuel Supply System Lean
During Power Enrichment”.
Was a problem found?—Verify repair Go to Step 13
13 1. Visually/physically inspect for the following
conditions:
Restriction of air intake system. Check for a
restricted air filter element, or foreign objects
blocking the air intake system.
Check for objects blocking the IAC passage or
throttle bore, excessive deposits in the throttle
bore and on the throttle plate.
Check for a condition that causes a large
vacuum leak, such as an incorrectly installed or
faulty crankcase ventilation hose/brake booster
hose.
Was a problem found?—Verify repair Go to Step 14
14 Check the injector connectors, if any of the injectors
are connected an incorrect cylinder, correct as
necessary.
Was a problem found?—Verify repair Go to Step 15
15 Perform the “Injector Coil/Balance Test” (Refer to 6E-
98 page).
Was a problem found.—Verify repair Go to Step 16
16 1. Check for fuel in the pressure regulator vacuum
hose.
2. If fuel is present, replace the fuel pressure
regulator assembly.
Was a problem found?—Verify repair Go to Step 17
17 Check for proper ignition voltage output with the spark
tester.
Was a problem found?—Verify repair Go to Step 18
18 1. Remove the spark plugs and check for gas or oil
fouling cracks, wear, improper gap, burned
electrodes, heavy deposits, or improper heat
range.
2. If spark plugs are fouled, the cause of fouling must
be determined before replacing the spark plugs.
Was a problem found?—Verify repair Go to Step 19 Step Action Value(s) Yes No