6A-10 ENGINE MECHANICAL (6VE1 3.5L)
Engine Lacks Power
Symptom Possible Cause Action
Trouble in fuel system Fuel Pressure Control Valve not
working normally Replace
Fuel injector clogged Clean or replace
Fuel pipe clogged Clean
Fuel filter clogged or fouled Replace
Fuel pump drive circuit not working
normally Correct or replace
Fuel tank not sufficiently breathing
due to clogged Evaporative Emission
Control System circuit Clean or replace
Water in fuel system Clean
Inferior quality fuel in fuel system Use fuel of specified octane rating
Engine Control Module supplied poor
voltage Correct circuit
Throttle Position Sensor cable broken
or poor connections Correct or replace
Throttle Position Sensor defective Replace
Mass Airflow Sensor not working
normally Replace
Manifold Absolute Pressure Sensor
not working normally Replace
Intake Air Temperature Sensor not
working normally Replace
Engine Coolant Temperature Sensor
circuit open or shorted Correct or replace
Engine Coolant Temperature Sensor
defective Replace
Engine Control Module defective Replace
Trouble in intake or exhaust system Air Cleaner Filter clogged Replace filter element
Air duct kinked or flattened Correct or replace
Exhaust system clogged Correct or replace
Ignition failure ———— Refer to Hard Start Troubleshooting
Guide
Heat range of spark plug inadequateInstall spark plugs of adequate heat
range
Ignition coil defective Replace
ENGINE MECHANICAL (6VE1 3.5L) 6A-11
Symptom Possible Cause Action
Engine overheating Level of Engine Coolant too low Replenish
Fan clutch defective Replace
Thermostat defective Replace
Engine Coolant pump defective Correct or replace
Radiator clogged Clean or replace
Radiator filler cap defective Replace
Level of oil in engine crankcase too
low or wrong engine oil Change or replenish
Resistance in exhaust system
increased Clean exhaust system or replace
defective parts
Throttle Position Sensor adjustment
incorrect Replace with Throttle Valve ASM
Throttle Position Sensor circuit open
or shorted Correct or replace
Cylinder head gasket damaged Replace
Engine overcooling Thermostat defective Replace (Use a thermostat set to
open at 82C (180F))
Engine lacks compression ———— Refer to Hard Start
Others Tire inflation pressure abnormal Adjust to recommended pressures
Brake drag Adjust
Clutch slipping Adjust or replace
Level of oil in engine crankcase too
high Correct level of engine oil
EGR valve defective Replace
6A-18 ENGINE MECHANICAL (6VE1 3.5L)
Fuel Consumption Excessive
Symptom Possible Cause Action
Trouble in fuel system Mixture too rich or too lean due to
trouble in fuel injection system Refer to “Abnormal Combustion"
Fuel cut function does not work Refer to “Abnormal Combustion"
Trouble in ignition system Misfiring or abnormal combustion due
to trouble in ignition system Refer to “Hard Start" or “Abnormal
Combustion"
Others Engine idle speed too high Reset to Section 6E
Returning of accelerator control
sluggish Correct
Fuel system leakage Correct or replace
Clutch slipping Correct
Brake drag Correct
Selection of transmission gear
incorrect Caution operator of incorrect gear
selection
Lubrication Problems
Symptom Possible Cause Action
Oil pressure too low Wrong oil in use Replace with correct engine oil
Relief valve sticking Replace
Oil pump not operating properly Correct or replace
Oil pump strainer clogged Clean or replace strainer
Oil pump worn Replace
Oil pressure gauge defective Correct or replace
Crankshaft bearing or connecting rod
bearing worn Replace
Oil contamination Wrong oil in use Replace with correct engine oil
Oil filter clogged Replace oil filter
Cylinder head gasket damage Replace gasket
Burned gases leaking Replace piston and piston rings or
cylinder body assembly
Oil not reaching valve system Oil passage in cylinder head or
cylinder body clogged Clean or correct
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-3
DTC P0201 (FLASH CODE 31) INJECTOR 1
CONTROL CIRCUIT ........................................ 6E-226
DTC P0202 (FLASH CODE 31) INJECTOR 2
CONTROL CIRCUIT ........................................ 6E-226
DTC P0203 (FLASH CODE 31) INJECTOR 3
CONTROL CIRCUIT ........................................ 6E-226
DTC P0204 (FLASH CODE 31) INJECTOR 4
CONTROL CIRCUIT ........................................ 6E-226
DTC P0205 (FLASH CODE 31) INJECTOR 5
CONTROL CIRCUIT ........................................ 6E-226
DTC P0206 (FLASH CODE 31) INJECTOR 6
CONTROL CIRCUIT ........................................ 6E-226
DTC P0336 (FLASH CODE 29) CRANKSHAFT
POSITION SENSOR CIRCUIT
RANGE/PERFORMANCE (58X) ...................... 6E-234
DTC P0337 (FLASH CODE 29) CRANKSHAFT
POSITION SENSOR CIRCUIT NO SIGNAL
(58X) ................................................................. 6E-234
DTC P0341 (FLASH CODE 41) CAMSHAFT
POSITION SENSOR CIRCUIT
RANGE/PERFORMANCE ............................... 6E-243
DTC P0342 (FLASH CODE 41) CAMSHAFT
POSITION SENSOR CIRCUIT NO SIGNAL .... 6E-243
DTC P0351 (FLASH CODE 42) IGNITION 1
CONTROL CIRCUIT ........................................ 6E-249
DTC P0352 (FLASH CODE 42) IGNITION 2
CONTROL CIRCUIT ........................................ 6E-249
DTC P0353 (FLASH CODE 42) IGNITION 3
CONTROL CIRCUIT ........................................ 6E-249
DTC P0354 (FLASH CODE 42) IGNITION 4
CONTROL CIRCUIT ........................................ 6E-249
DTC P0355 (FLASH CODE 42) IGNITION 5
CONTROL CIRCUIT ........................................ 6E-249
DTC P0356 (FLASH CODE 42) IGNITION 6
CONTROL CIRCUIT ........................................ 6E-249
DTC P0404 (FLASH CODE 32) EGR CIRCUIT
RANGE/PERFORMANCE (OPEN VALVE)....... 6E-258
DTC P1404 (FLASH CODE 32) EGR CIRCUIT
RANGE/PERFORMANCE (CLOSED VALVE) .. 6E-258
DTC P0405 (FLASH CODE 32) EGR
CIRCUIT LOW.................................................. 6E-263
DTC P0406 (FLASH CODE 32) EGR
CIRCUIT HIGH ................................................. 6E-268
DTC P0444 EVAP PURGE SOLENOID
VALVE CIRCUIT LOW VOLTAGE ................... 6E-274
DTC P0445 EVAP PURGE SOLENOID
VALVE CIRCUIT HIGH VOLTAGE .................. 6E-274
DTC P0500 (FLASH CODE 24) VEHICLE
SPEED SENSOR (VSS) CIRCUIT
RANGE/PERFORMANCE ................................ 6E-279 DTC P0562 (FLASH CODE 66) SYSTEM
VOLTAGE LOW .............................................. 6E-288
DTC P0563 (FLASH CODE 66) SYSTEM
VOLTAGE HIGH .............................................. 6E-321
DTC P0601 (FLASH CODE 51) ENGINE
CONTROL MODULE (ECM) MEMORY
CHECKSUM ..................................................... 6E-293
DTC P0602 PROGRAMMING ERROR............. 6E-295
DTC P1508 (FLASH CODE 22) IDLE AIR
CONTROL SYSTEM LOW/CLOSED ............... 6E-296
DTC P1509 (FLASH CODE 22) IDLE AIR
CONTROL SYSTEM HIGH/OPEN ................... 6E-296
DTC P1601 (FLASH CODE 65) CAN BUS
OFF .................................................................. 6E-304
DTC U2104 (FLASH CODE 67) CAN BUS
RESET COUNTER OVER-RUN ...................... 6E-310
DTC P1626 IMMOBILIZER NO SIGNAL ........... 6E-317
DTC P1631 IMMOBILIZER WRONG
SIGNAL ............................................................ 6E-323
DTC P1648 IMMOBILIZER WRONG
SECURITY CODE ENTERED .......................... 6E-325
DTC P1649 IMMOBILIZER FUNCTION NOT
PROGRAMMED ................................................ 6E-327
SYMPTOM DIAGNOSIS ................................... 6E-329
PRELIMINARY CHECKS .............................. 6E-329
VISUAL/PHYSICAL CHECK .......................... 6E-329
INTERMITTENT ............................................. 6E-329
ENGINE CRANKS BUT WILL NOT RUN ......... 6E-331
HARD START SYMPTOM ................................ 6E-334
ROUGH, UNSTABLE, OR INCORRECT
IDLE, STALLING SYMPTOM ........................... 6E-337
SURGES AND/OR CHUGS SYMPTOM ........... 6E-341
HESITATION, SAG, STUMBLE SYMPTOM ..... 6E-345
CUTS OUT, MISSES SYMPTOM ..................... 6E-347
LACK OF POWER, SLUGGISH OR SPONGY
SYMPTOM ....................................................... 6E-352
DETONATION/SPARK KNOCK SYMPTOM..... 6E-356
POOR FUEL ECONOMY SYMPTOM ............... 6E-359
EXCESSIVE EXHAUST EMISSIONS OR
ODORS SYMPTOM ......................................... 6E-362
DIESELING, RUN-ON SYMPTOM .................... 6E-365
BACKFIRE SYMPTOM ..................................... 6E-366
ON-VEHICLE SERVICE PROCEDURE ........... 6E-368
ENGINE CONTROL MODULE (ECM) .............. 6E-368
CRANKSHAFT POSITION (CKP) SENSOR ..... 6E-369
CAMSHAFT POSITION (CMP) SENSOR ......... 6E-369
ENGINE COOLANT TEMPERATURE (ECT)
SENSOR .......................................................... 6E-370
MASS AIR FLOW (MAF) SENSOR & INTAKE AIR
TEMPERATURE (IAT) SENSOR ...................... 6E-370
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-53
Idle Air Control (IAC) Valve
Step
CoilAB CD
Coil A High
(EC M B13)On On
Coil A Low
(EC M B16)On On
Coil B High
(EC M B14)On On
Coil B Low
(EC M B17)On On
(IAC Valve Close Direction)
(IAC Valve Open Direction)
The idle air control valve (IAC) valve is two directional
and gives 2-way control. It has a stepping moto
r
capable of 256 steps, and also has 2 coils. With power
supply to the coils controlled steps by the engine control
module (ECM), the IAC valve's pintle is moved to adjus
t
idle speed, raising it for fast idle when cold or there is
extra load from the air conditioning or power steering.
By moving the pintle in (to decrease air flow) or out (to
increase air flow), a controlled amount of the air can
move around the throttle plate. If the engine speed is
too low, the engine control module (ECM) will retract the
IAC pintle, resulting in more air moving past the throttle
plate to increase the engine speed.
If the engine speed is too high, the engine control
module (ECM) will extend the IAC pintle, allowing less
air to move past the throttle plate, decreasing the
engine speed.
The IAC pintle valve moves in small step called counts.
During idle, the proper position of the IAC pintle is
calculated by the engine control module (ECM) based
on battery voltage, coolant temperature, engine load,
and engine speed.
If the engine speed drops below a specified value, and
the throttle plate is closed, the engine control module
(ECM) senses a near-stall condition. The engine control
module (ECM) will then calculate a new IAC pintle valve
position to prevent stalls. If the IAC valve is disconnected and reconnected with
the engine running, the idle speed will be wrong. In this
case, the IAC must be reset. The IAC resets when the
key is cycled "On" then "Off". When servicing the IAC, i
t
should only be disconnected or connected with the
ignition "Off".
The position of the IAC pintle valve affects engine start-
up and the idle characteristic of the vehicle.
If the IAC pintle is fully open, too much air will be
allowed into the manifold. This results in high idle
speed, along with possible hard starting and lean
air/fuel ratio.
Camshaft Position (CMP) Sensor
12
(1) Camshaft Position (CMP) Sensor
(2) EGR Valve
With the use of sequential multi-point fuel injection, a
hall element type camshaft position (CMP) is adopted to
provide information to be used in making decisions on
injection timing to each cylinder. It is mounted on the
rear of the left-hand cylinder head and sends signals to
the ECM.
One pulse is generated per two rotations of crankshaft.
6E-58 3.5L ENGINE DRIVEABILITY AND EMISSIONS
GENERAL DESCRIPTION FOR
ELECTRONIC IGNITION SYSTEM IGNITION
COILS & CONTROL
A separate coil-at-plug module is located at each spark
plug.
The coil-at-plug module is attached to the engine with
two screws. It is installed directly to the spark plug by an
electrical contact inside a rubber boot.
A three way connector provides 12 volts primary supply
from the ignition coil fuse, a ground switching trigge
r
line from the ECM, and ground.
The ignition control spark timing is the ECM's method o
f
controlling the spark advance and the ignition dwell.
The ignition control spark advance and the ignition dwell
are calculated by the ECM using the following inputs.
Engine speed
Crankshaft position (CKP) sensor
Camshaft position (CMP) sensor
Engine coolant temperature (ECT) sensor
Throttle position sensor
Park or neutral position switch
Vehicle speed sensor
ECM and ignition system supply voltage
Based on these sensor signal and engine load
information, the ECM sends 5V to each ignition coil
requiring ignition. This signal sets in the powe
r
transistor of the ignition coil to establish a grounding
circuit for the primary coil, applying battery voltage to
the primary coil.
At the ignition timing, the ECM stops sending the 5V
signal voltage. Under this condition the power transistor
of the ignition coil is set off to cut the battery voltage to
the primary coil, thereby causing a magnetic field
generated in the primary coil to collapse.
On this moment a line of magnetic force flows to the
secondary coil, and when this magnetic line crosses the
coil, high voltage induced by the secondary ignition
circuit to flow through the spark plug to the ground.
Ignition Control ECM Output
The ECM provides a zero volt (actually about 100 mV to
200 mV) or a 5-volt output signal to the ignition control
(IC) module. Each spark plug has its own primary and
secondary coil module ("coil-at-plug") located at the
spark plug itself. When the ignition coil receives the
5-volt signal from the ECM, it provides a ground path fo
r
the B+ supply to the primary side of the coil-at -plug
module. This energizes the primary coil and creates a
magnetic field in the coil-at-plug module. When the
ECM shuts off the 5-volt signal to the ignition control
module, the ground path for the primary coil is broken.
The magnetic field collapses and induces a high voltage
secondary impulse which fires the spark plug and
ignites the air/fuel mixture.
The circuit between the ECM and the ignition coil is
monitored for open circuits, shorts to voltage, and
shorts to ground. If the ECM detects one of these
events, it will set one of the following DTCs:
P0351: Ignition coil Fault on Cylinder #1
P0352: Ignition coil Fault on Cylinder #2
P0353: Ignition coil Fault on Cylinder #3
P0354: Ignition coil Fault on Cylinder #4
P0355: Ignition coil Fault on Cylinder #5
P0356: Ignition coil Fault on Cylinder #6
Spark Plug
Although worn or dirty spark plugs may give satisfactory
operation at idling speed, they frequency fail at highe
r
engine speeds. Faulty spark plugs may cause poor fuel
economy, power loss, loss of speed, hard starting and
generally poor engine performance. Follow the
scheduled maintenance service recommendations to
ensure satisfactory spark plug performance. Refer to
Maintenance and Lubrication.
Normal spark plug operation will result in brown to
grayish-tan deposits appearing on the insulator portion
of the spark plug. A small amount of red-brown, yellow,
and white powdery material may also be present on the
insulator tip around the center electrode. These
deposits are normal combustion by-products of fuels
and lubricating oils with additives. Some electrode wea
r
will also occur. Engines which are not running properly
are often referred to as “misfiring." This means the
ignition spark is not igniting the air/fuel mixture at the
proper time.
Spark plugs may also misfire due to fouling, excessive
gap, or a cracked or broken insulator. If misfiring
occurs before the recommended replacement interval,
locate and correct the cause.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E -89
After recording the snapshot in Tech2, transfer the data
from Tech2 to PC by the below procedures.
1.
Start TIS2000.
2.
Select [Snapshot Upload] on the TIS2000 start
screen.
3.
Select [Upload from trouble diagnosis tool (transfe
r
from diagnosis tester)] or click the corresponding
icon of the tool bar.
4.
Select Tech2, and transfer the recorded snapshot
information.
5.
Select the transferred snapshot.
6.
After ending transfer of the snapshot, data
parameter list is displayed on the screen. 3. Snapshot data is displayed with TIS2000
[Snapshot Upload] function.
Snapshot is stored in the PC hard disk or floppy disk,
and can be displayed any time.
Stored snapshot can be displayed by the below
procedures.
1.
Start TIS2000.
2.
Select [Snapshot Upload] on the TIS2000 start
screen.
3.
Select [Open the existing files] or click the
corresponding icon of the tool bar.
4.
Select the transferred snapshot.
5.
Open the snapshot, to display the data paramete
r
list on the screen.
Graph display Values and graphs (Max. 3 graphs):
1.
Click the icon for graph display. [Graph Parameter]
window opens.
2.
Click the first graph icon of the window upper part,
and select one parameter from the list of the
window lower part. Selected parameter is
displayed nest to the graph icon. Graph division
can be selected in the field on the parameter right
side.
3.
Repeat the same procedures with the 2nd and 3rd
icons.
4.
After selecting all parameters to be displayed
(Max. 3 parameters), click [OK] button.
5.
Parameter selected is displayed in graph form on
the right of the data parameter on the screen.
6.
Graph display can be moved with the navigation
icon.
7.
For displaying another parameter by graph, click
the parameter of the list, drug the mouse to the
display screen while pressing the mouse button
and release the mouse button. New parameter is
displayed at the position of the previous
parameter. For displaying the graph display screen
in full size, move the cursor upward on the screen.
When the cursor is changed to the magnifying
glass form, click the screen. Graph screen is
displayed on the whole screen.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E -91
SERVICE PROGRAMMING SYSTEM (SPS)
The procedure to program the control unit by using the
Service Programming System (SPS) software
contained in TIS2000 is explained below.
NOTE:
If the Engine Control Module (ECM) was
programmed, the Immobilizer System must be
linked to the ECM: Refer to section 11
"Immobilizer System-ECM replacement" for the
ECM/Immobilizer linking procedure.
Should Tech2 display "SPS Procedure was not
successful", engine will not start, but no DTCs
are present, low battery voltage or poo
r
electrical connections should be the primary
suspects. Perform the SPS procedure again
after rectifying the fault/s.
IMPORTANT:
Perform the following checks before attempting to
program the control unit:
The Tech2 PCMCIA card is programmed with
the latest software release.
The latest release of TIS2000 is loaded on the
PC.
The vehicle battery is fully charged.
The control unit to be programmed is
connected to the vehicle.
1. Preparations of TIS 2000
1.
Connect Tech 2 to P/C.
2.
Check to see if Hardware Key is plugged into Port.
3.
Activate TIS 2000 by P/C.
4.
On the activating screen of TIS2000, choose
"Service Programming System"
5.
On the screen of "Diagnostic Tester and
Processing Program Selection", choose the one
that will comply with the following.
Diagnostic Tech 2 in use
New programming by the existing module or new
programming by the replaced/new module.
Fixing position of the control unit.
6.
Upon completion of the selection, push the button
of "Next".