EC-16Revision: August 2007
PRECAUTIONS
2004 QX56
PRECAUTIONSPFP:00001
Precautions for Supplemental Restraint System (SRS) “AIR BAG” and “SEAT
BELT PRE-TENSIONER”
UBS00GZ5
The Supplemental Restraint System such as “AIR BAG” and “SEAT BELT PRE-TENSIONER”, used along
with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain
types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS
system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front
air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the SRS and SB section of this Service Man-
ual.
WAR NIN G:
To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death
in the event of a collision which would result in air bag inflation, all maintenance must be per-
formed by an authorized NISSAN/INFINITI dealer.
Improper maintenance, including incorrect removal and installation of the SRS, can lead to per-
sonal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air
Bag Module, see the SRS section.
Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this
Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or
harness connectors.
On Board Diagnostic (OBD) System of Engine and A/TUBS00GZ6
The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the
driver of a malfunction causing emission deterioration.
CAUTION:
Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any
repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves,
etc. will cause the MIL to light up.
Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
dirt, bent terminals, etc.)
Certain systems and components, especially those related to OBD, may use a new style slide-
locking type harness connector. For description and how to disconnect, refer to PG-68, "
HAR-
NESS CONNECTOR" .
Be sure to route and secure the harnesses properly after work. The interference of the harness
with a bracket, etc. may cause the MIL to light up due to the short circuit.
Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
etc.
Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and
TCM (Transmission control module) before returning the vehicle to the customer.
PrecautionUBS00GZ7
Always use a 12 volt battery as power source.
Do not attempt to disconnect battery cables while engine is
running.
Before connecting or disconnecting the ECM harness con-
nector, turn ignition switch OFF and disconnect negative
battery cable. Failure to do so may damage the ECM
because battery voltage is applied to ECM even if ignition
switch is turned OFF.
Before removing parts, turn ignition switch OFF and then
disconnect battery ground cable.
SEF 2 89 H
ENGINE CONTROL SYSTEM
EC-25
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
System ChartUBS00GZD
*1: This sensor is not used to control the engine system. This is used only for the on board diagnosis.
*2: This sensor is not used to control the engine system under normal conditions.
*3: This input signal is sent to the ECM through CAN communication line.
*4: This output signal is sent from the ECM through CAN communication line.Input (Sensor) ECM Function Output (Actuator)
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS)
Mass air flow sensor
Engine coolant temperature sensor
A/F sensor 1
Throttle position sensor
Accelerator pedal position sensor
Park/neutral position (PNP) switch
Intake air temperature sensor
Power steering pressure sensor
Ignition switch
Battery voltage
Knock sensor
Refrigerant pressure sensor
Stop lamp switch
ASCD steering switch
ASCD brake switch
Fuel level sensor*1 *3
EVAP control system pressure sensor
Fuel tank temperature sensor*1
Heated oxygen sensor 2*2
TCM (Transmission control module)*3
ABS actuator and electric unit (control unit)*3
Air conditioner switch*3
Wheel sensor*3
Electrical load signal*3
Fuel injection & mixture ratio control Fuel injector
Electronic ignition system Power transistor
Nissan torque demand control system
Electric throttle control actuator
Fuel injector
Fuel pump control Fuel pump relay
ASCD vehicle speed control Electric throttle control actuator
On board diagnostic system
MIL (On the instrument panel)*
4
A/F sensor 1 heater control A/F sensor 1 heater
Heated oxygen sensor 2 heater control Heated oxygen sensor 2 heater
EVAP canister purge flow controlEVAP canister purge volume control
solenoid valve
Air conditioning cut control
Air conditioner relay*
4
Cooling fan control
Cooling fan relay*4
ON BOARD DIAGNOSIS for EVAP system EVAP canister vent control valve
EC-28Revision: August 2007
ENGINE CONTROL SYSTEM
2004 QX56
FUEL INJECTION TIMING
Two types of systems are used.
Sequential Multiport Fuel Injection System
Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used
when the engine is running.
Simultaneous Multiport Fuel Injection System
Fuel is injected simultaneously into all eight cylinders twice each engine cycle. In other words, pulse signals of
the same width are simultaneously transmitted from the ECM.
The eight injectors will then receive the signals two times for each engine cycle.
This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.
FUEL SHUT-OFF
Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.
Electronic Ignition (EI) SystemUBS00GZF
INPUT/OUTPUT SIGNAL CHART
*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
The ignition timing is controlled by the ECM to maintain the best air-
fuel ratio for every running condition of the engine. The ignition tim-
ing data is stored in the ECM. This data forms the map shown.
The ECM receives information such as the injection pulse width and
camshaft position sensor signal. Computing this information, ignition
signals are transmitted to the power transistor.
e.g., N: 1,800 rpm, Tp: 1.50 msec
A °BTDC
During the following conditions, the ignition timing is revised by the
ECM according to the other data stored in the ECM.
At starting
During warm-up
PBIB0122E
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Engine speed*
2
Piston position
Ignition timing
controlPower transistor Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Knock sensor Engine knocking
Park/neutral position (PNP) switch Gear position
Battery
Battery voltage*
2
Wheel sensor*1Vehicle speed
SEF 7 42 M
ENGINE CONTROL SYSTEM
EC-29
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
At idle
At low battery voltage
During acceleration
The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not
operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition.
The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.
Nissan Torque Demand (NTD) Control SystemUBS00GZG
INPUT/OUTPUT SIGNAL CHART
*1: Signal is sent to the ECM through CAN communication line.
SYSTEM DESCRIPTION
NTD control system decides the target traction based on the accelerator operation status and the current driv-
ing condition. It then selects the engine torque target by correcting running resistance and atmospheric pres-
sure, and controlling the power-train. Using electric throttle control actuator, it achieves the engine torque
development target which corresponds linearly to the driver's accelerator operation.
Running resistance correction control compares the engine torque estimate value, measured vehicle acceler-
ation, and running resistance on a flat road, and estimates vehicle weight gain and running resistance varia-
tion caused by slopes to correct the engine torque estimate value.
Atmospheric pressure correction control compares the engine torque estimate value from the airflow rate and
the target engine torque for the target traction, and estimates variation of atmospheric pressure to correct the
target engine torque. This system achieves powerful driving without reducing engine performance in the prac-
tical speed range in mountains and high-altitude areas.
Sensor Input signal to ECM ECM function Actuator
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS)Engine speed
NTD controlElectric throttle con-
trol actuator and fuel
injector Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Park/Neutral position (PNP) switch Gear position
Power steering pressure sensor Power steering operation
Battery Battery voltage
TCM (CAN communication) A/T control signal
Air conditioner switch*
1Air conditioner operation
ABS actuator and electric unit (control unit)*
1VDC/TCS/ABS operation
Wheel sensor*
1Vehicle speed
Electrical load*
1Electrical load signal
EC-32Revision: August 2007
BASIC SERVICE PROCEDURE
2004 QX56
BASIC SERVICE PROCEDUREPFP:00018
Idle Speed and Ignition Timing CheckUBS00GZK
IDLE SPEED
With CONSULT-II
Check idle speed in “DATA MONITOR” mode with CONSULT-II.
With GST
Check idle speed with GST.
IGNITION TIMING
Any of following two methods may be used.
Method A
1. Attach timing light to loop wire near No. 1 ignition coil as shown.
NOTE:
Do not use loop wire located near No. 2 ignition coil.
2. Check ignition timing.
Method B
1. Remove No. 1 ignition coil.
2. Connect No. 1 ignition coil and No. 1 spark plug with suitable
high-tension wire as shown, and attach timing light clamp to this
wire.
SEF 0 58 Y
BBIA0377E
BBIA0360E
BBIA0378E
BASIC SERVICE PROCEDURE
EC-33
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
3. Check ignition timing.
Idle Speed/Ignition Timing/Idle Mixture Ratio AdjustmentUBS00GZL
PREPARATION
1. Make sure that the following parts are in good order.
Battery
Ignition system
Engine oil and coolant levels
Fuses
ECM harness connector
Vacuum hoses
Air intake system
(Oil filler cap, oil level gauge, etc.)
Fuel pressure
Engine compression
Throttle valve
Evaporative emission system
2. On air conditioner equipped models, checks should be carried out while the air conditioner is OFF.
3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio,
checks should be carried out while shift lever is in N position.
4. When measuring CO percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
5. Turn off headlamp, heater blower, rear window defogger.
6. Keep front wheels pointed straight ahead.
SEF 0 11V
BBIA0379E
BASIC SERVICE PROCEDURE
EC-37
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
6. PERFORM IDLE AIR VOLUME LEARNING
Perform EC-44, "
Idle Air Volume Learning" .
Is Idle Air Volume Learning carried out successfully?
Ye s o r N o
Yes >> GO TO 7.
No >> 1. Follow the instruction of Idle Air Volume Learning.
2. GO TO 4.
7. CHECK TARGET IDLE SPEED AGAIN
With CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Read idle speed in “DATA MONITOR” mode with CONSULT-II.
Without CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Check idle speed.
OK or NG
OK >> GO TO 10.
NG >> GO TO 8.
8. DETECT MALFUNCTIONING PART
Check the following.
Check camshaft position sensor (PHASE) and circuit. Refer to EC-261 .
Check crankshaft position sensor (POS) and circuit. Refer to EC-255 .
OK or NG
OK >> GO TO 9.
NG >> 1. Repair or replace.
2. GO TO 4.
9. CHECK ECM FUNCTION
1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but
this is a rare case.)
2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to
IBL-140, "
ECM Re-communicating Function" .
>> GO TO 4. 650 ± 50 rpm (in P or N position)
650 ± 50 rpm (in P or N position)
EC-38Revision: August 2007
BASIC SERVICE PROCEDURE
2004 QX56
10. CHECK IGNITION TIMING
1. Run engine at idle.
2. Check ignition timing with a timing light.
OK or NG
OK (With CONSULT-II)>>GO TO 19.
OK (Without CONSULT-II)>>GO TO 20.
NG >> GO TO 11.
11 . PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING
1. Stop engine.
2. Perform EC-44, "
Accelerator Pedal Released Position Learning" .
>> GO TO 12.
12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING
Perform EC-44, "
Throttle Valve Closed Position Learning" .
>> GO TO 13.
13. PERFORM IDLE AIR VOLUME LEARNING
Perform EC-44, "
Idle Air Volume Learning" .
Is Idle Air Volume Learning carried out successfully?
Ye s o r N o
Yes >> GO TO 14.
No >> 1. Follow the instruction of Idle Air Volume Learning.
2. GO TO 4.
14. CHECK TARGET IDLE SPEED AGAIN
With CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Read idle speed in “DATA MONITOR” mode with CONSULT-II.
Without CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Check idle speed.
OK or NG
OK >> GO TO 15.
NG >> GO TO 17.15 ± 5° BTDC (in P or N position)
BBIA0379E
650 ± 50 rpm (in P or N position)
650 ± 50 rpm (in P or N position)