ASCD BRAKE SWITCH
EC-629
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
7. CHECK ASCD BRAKE SWITCH
Refer to EC-631, "
Component Inspection"
OK or NG
OK >> GO TO 13.
NG >> Replace ASCD brake switch.
8. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT
1. Turn ignition switch OFF.
2. Disconnect stop lamp switch harness connector.
3. Check voltage between stop lamp switch terminal 1 and ground
with CONSULT -II or tester.
OK or NG
OK >> GO TO 10.
NG >> GO TO 9.
9. DETECT MALFUNCTIONING PART
Check the following.
Fuse block (J/B) connector E201
10A fuse
Joint connector-2
Harness for open or short between stop lamp switch and battery
>> Repair open circuit or short to ground or short to power in harness or connectors.
10. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
1. Disconnect ECM harness connector.
2. Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2.
Refer to Wiring Diagram.
3. Also check harness for short to ground and short to power.
OK or NG
OK >> GO TO 12.
NG >> GO TO 11.
PBIB1605E
Voltage: Battery voltage
PBIB1184E
Continuity should exist.
EC-638
[VQ35DE]
SNOW MODE SWITCH
Revision: 2004 November 2004 FX35/FX45
4. CHECK POWER SUPPLY CIRCUIT-I
1. Disconnect “unified meter and A/C amp.” harness connector.
2. Turn ignition switch ON.
3. Check voltage between “unified meter and A/C amp.” terminal
12 and ground under the following conditions with CONSULT-II
or tester.
OK or NG
OK >> GO TO 8.
NG >> GO TO 5.
5. CHECK POWER SUPPLY CIRCUIT-II
1. Turn ignition switch OFF.
2. Disconnect snow mode switch.
3. Turn ignition switch ON.
4. Check voltage between snow mode switch terminal 1 and
ground with CONSULT-II or tester.
OK or NG
OK >> GO TO 7.
NG >> GO TO 6.
6. DETECT MALFUNCTIONING PART
Check the following.
10A fuse
Fuse block (J/B) harness connector M1
Harness for open or short between snow mode switch and fuse.
>> Repair open circuit or short to ground or short to power in harness or connectors.
7. CHECK SNOW MODE SWITCH OUT PUT SIGNAL CIRCUIT FOR OPEN AND SHORT
1. Turn ignition switch OFF.
2. Check harness continuity between snow mode switch terminal 3 and “unified meter and A/C amp.” termi-
nal 12. Refer to Wiring Diagram.
3. Also check harness for short to ground and short to power.
OK or NG
OK >> GO TO 8.
NG >> Repair open circuit or short to ground or short to power in harness or connectors.
CONDITION VOLTAGE
Snow mode switch: ON Battery voltage
Snow mode switch: OFF 0V
PBIB2010E
Voltage: Battery voltage.
PBIB2011E
Continuity should exist.
EVAPORATIVE EMISSION SYSTEM
EC-649
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
3. Apply battery voltage between the terminals of EVAP canister vent control valve to make a closed EVAP
system.
4. To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to
2.76 kPa (0.014 to 0.028 kg/cm
2 , 0.2 to 0.4 psi).
5. Remove EVAP service port adapter and hose with pressure pump.
6. Locate the leak using a leak detector. Refer to EC-644, "
EVAPORATIVE EMISSION LINE DRAWING" .
PBIB1611E
EC-650
[VQ35DE]
ON BOARD REFUELING VAPOR RECOVERY (ORVR)
Revision: 2004 November 2004 FX35/FX45
ON BOARD REFUELING VAPOR RECOVERY (ORVR)PFP:00032
System DescriptionABS006ZB
From the beginning of refueling, the air and vapor inside the fuel tank go through refueling EVAP vapor cut
valve and EVAP/ORVR line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is
released to the atmosphere.
When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and
refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged
during driving.
WARNING:
When conducting inspections below, be sure to observe the following:
Put a “CAUTION: INFLAMMABLE” sign in workshop.
Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
Be sure to furnish the workshop with a CO2 fire extinguisher.
CAUTION:
Before removing fuel line parts, carry out the following procedures:
–Put drained fuel in an explosion-proof container and put lid on securely.
–Release fuel pressure from fuel line. Refer to Fuel Pressure Release, EC-51 .
–Disconnect battery ground cable.
Always replace O-ring when the fuel gauge retainer is removed.
Do not kink or twist hose and tube when they are installed.
Do not tighten hose and clamps excessively to avoid damaging hoses.
After installation, run engine and check for fuel leaks at connection.
Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically.
Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.
PBIB1068E
EC-660
[VQ35DE]
SERVICE DATA AND SPECIFICATIONS (SDS)
Revision: 2004 November 2004 FX35/FX45
SERVICE DATA AND SPECIFICATIONS (SDS)PFP:00030
Fuel PressureABS006ZI
Idle Speed and Ignition TimingABS006ZJ
*1: Under the following conditions:
Air conditioner switch: OFF
Electric load: OFF (Lights, heater fan & rear window defogger)
Steering wheel: Kept in straight-ahead position
Calculated Load ValueABS006ZK
Mass Air Flow SensorABS006ZL
*: Engine is warmed up to normal operating temperature and running under no-load.
Intake Air Temperature SensorABS006ZM
Engine Coolant Temperature SensorABS006ZN
Heated Oxygen Sensor 1 HeaterABS006ZO
Heated Oxygen sensor 2 HeaterABS006ZP
Crankshaft Position Sensor (POS)ABS006ZQ
Refer to EC-307, "Component Inspection" .
Camshaft Position Sensor (PHASE)ABS006ZR
Refer to EC-315, "Component Inspection" .
Throttle Control MotorABS006ZS
Fuel pressure at idling kPa (kg/cm2 , psi)Approximately 350 (3.57, 51)
Target idle speed
No-load*1 (in P or N position)650±50 rpm
Air conditioner: ON In P or N position 775 rpm or more
Ignition timing In P or N position 15° ± 5° BTDC
Calculated load value% (Using CONSULT-II or GST)
At idle5 - 35
At 2,500 rpm5 - 35
Supply voltageBattery voltage (11 - 14V)
Output voltage at idle1.1 - 1.5*V
Mass air flow (Using CONSULT-II or GST)2.0 - 6.0 g·m/sec at idle*
7.0 - 20.0 g·m/sec at 2,500 rpm*
Temperature °C (°F) Resistance kΩ
25 (77)1.94 - 2.06
80 (176)0.295 - 0.349
Temperature °C (°F) Resistance kΩ
20 (68)2.1 - 2.9
50 (122)0.68 - 1.00
90 (194)0.236 - 0.260
Resistance [at 25°C (77°F)] 3.3 - 4.0Ω
Resistance [at 25°C (77°F)] 5.0 - 7.0Ω
Resistance [at 25°C (77°F)] Approximately 1 - 15Ω
EC-670
[VK45DE]
PRECAUTIONS
Revision: 2004 November 2004 FX35/FX45
PRECAUTIONSPFP:00001
Precautions for Supplemental Restraint System (SRS) “AIR BAG” and “SEAT
BELT PRE-TENSIONER”
ABS00BYX
The Supplemental Restraint System such as “AIR BAG” and “SEAT BELT PRE-TENSIONER”, used along
with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain
types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS
system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front
air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the SRS and SB section of this Service Man-
ual.
WARNING:
To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death
in the event of a collision which would result in air bag inflation, all maintenance must be per-
formed by an authorized NISSAN/INFINITI dealer.
Improper maintenance, including incorrect removal and installation of the SRS, can lead to per-
sonal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air
Bag Module, see the SRS section.
Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this
Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or
harness connectors.
On Board Diagnostic (OBD) System of Engine and A/TABS00BYY
The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the
driver of a malfunction causing emission deterioration.
CAUTION:
Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any
repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves,
etc. will cause the MIL to light up.
Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
dirt, bent terminals, etc.)
Certain systems and components, especially those related to OBD, may use a new style slide-
locking type harness connector. For description and how to disconnect, refer to PG-74, "
HAR-
NESS CONNECTOR" .
Be sure to route and secure the harnesses properly after work. The interference of the harness
with a bracket, etc. may cause the MIL to light up due to the short circuit.
Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
etc.
Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and
TCM (Transmission control module) before returning the vehicle to the customer.
PrecautionABS00BYZ
Always use a 12 volt battery as power source.
Do not attempt to disconnect battery cables while engine is
running.
Before connecting or disconnecting the ECM harness con-
nector, turn ignition switch OFF and disconnect negative
battery cable. Failure to do so may damage the ECM
because battery voltage is applied to ECM even if ignition
switch is turned OFF.
Before removing parts, turn ignition switch OFF and then
disconnect battery ground cable.
SEF289H
PRECAUTIONS
EC-671
[VK45DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
Do not disassemble ECM.
If a battery cable is disconnected, the memory will return to
the ECM value.
The ECM will now start to self-control at its initial value.
Engine operation can vary slightly when the terminal is dis-
connected. However, this is not an indication of a malfunc-
tion. Do not replace parts because of a slight variation.
When connecting ECM harness connector, fasten it
securely with a lever as far as it will go as shown in the fig-
ure.
When connecting or disconnecting pin connectors into or
from ECM, take care not to damage pin terminals (bend or
break).
Make sure that there are not any bends or breaks on ECM
pin terminal, when connecting pin connectors.
Securely connect ECM harness connectors.
A poor connection can cause an extremely high (surge)
voltage to develop in coil and condenser, thus resulting in
damage to ICs.
Keep engine control system harness at least 10 cm (4 in)
away from adjacent harness, to prevent engine control sys-
tem malfunctions due to receiving external noise, degraded
operation of ICs, etc.
Keep engine control system parts and harness dry.
Before replacing ECM, perform ECM Terminals and Refer-
ence Value inspection and make sure ECM functions prop-
erly. Refer to EC-750
.
Handle mass air flow sensor carefully to avoid damage.
Do not disassemble mass air flow sensor.
Do not clean mass air flow sensor with any type of deter-
gent.
Do not disassemble electric throttle control actuator.
Even a slight leak in the air intake system can cause seri-
ous incidents.
Do not shock or jar the camshaft position sensor (PHASE),
crankshaft position sensor (POS).
PBIB1164E
PBIB1512E
PBIB0090E
MEF040D
EC-678
[VK45DE]
ENGINE CONTROL SYSTEM
Revision: 2004 November 2004 FX35/FX45
System ChartABS00BZ5
*1: This sensor is not used to control the engine system. This is used only for the on board diagnosis.
*2: This sensor is not used to control the engine system under normal conditions.
*3: This input signal is sent to the ECM through CAN communication line.
*4: This output signal is sent from the ECM through CAN communication line.Input (Sensor) ECM Function Output (Actuator)
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS)
Intake valve timing control position sensor
Mass air flow sensor
Engine coolant temperature sensor
Heated oxygen sensor 1
Throttle position sensor
Accelerator pedal position sensor
Park/neutral position (PNP) switch
Intake air temperature sensor
Power steering pressure sensor
Ignition switch
Battery voltage
Knock sensor
Refrigerant pressure sensor
Stop lamp switch
ICC steering switch
ICC brake switch
ASCD steering switch
ASCD brake switch
Fuel level sensor*1 *3
EVAP control system pressure sensor
Fuel tank temperature sensor*1
Heated oxygen sensor 2*2
TCM (Transmission control module)*3
ABS actuator and electric unit (control unit)*3
ICC unit*3
Air conditioner switch*3
Wheel sensor*3
Electrical load signal*3
Fuel injection & mixture ratio control Fuel injector
Electronic ignition system Power transistor
Nissan torque demand control system
Electric throttle control actuator
Fuel injector
Fuel pump control Fuel pump relay
ICC vehicle speed control
Electric throttle control actuator
ASCD vehicle speed control
On board diagnostic system
MIL (On the instrument panel)*
4
Power valve control VIAS control solenoid valve
Intake valve timing controlIntake valve timing control solenoid
valve
Heated oxygen sensor 1 heater control Heated oxygen sensor 1 heater
Heated oxygen sensor 2 heater control Heated oxygen sensor 2 heater
EVAP canister purge flow controlEVAP canister purge volume control
solenoid valve
Air conditioning cut control
Air conditioner relay*
4
Cooling fan control
Cooling fan relay*4
ON BOARD DIAGNOSIS for EVAP system EVAP canister vent control valve