1F – 436IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0303
CYLINDER 3 MISFIRE
System Description
The Engine Control Module (ECM) monitors the crank-
shaft and camshaft positions to detect if the engine is mis-
firing. The ECM looks for a quick drop in crankshaft speed.
This test is executed in blocks of 100 engine revolution
tests. It may take between one to several tests to store a
Diagnostic Trouble Code (DTC) and illuminate the Mal-
function Indicator Lamp (MIL). Under light misfire condi-
tions, it may also take more than one trip to set a DTC. Se-
vere misfire will flash the MIL, indicating that catalyst
damage is possible.
Conditions for Setting the DTC
S Emission threshold is 3%.
S 20 engine cycles have occurred since cranking has
started.
S A/C compressor clutch has not just engaged or dis-
engaged.
S Engine load and engine speed is in a detectable
region and is at or above zero torque.
S Camshaft Position (CMP) sensor is in synchroniza-
tion.
S Exhaust Gas Recirculation (EGR) flow diagnostic is
not in progress.
S Fuel level is greater than 12% of rated tank capac-
ity.
S Decel Fuel Cutoff (DFCO) not active.
S Throttle position change is less than 3% per 125
ms.
S Vehicle has not encountered an abusive engine
speed of 7000 rpm.
S Crankshaft speed patters are normal.
S Throttle position is less than 3% when vehicle
speed is greater than 10 km/h (6 mph).
S Vehicle voltage is between 11 and 16 volts.
S Engine Coolant Temperature (ECT) is between
–7°C (19°F) and 120°C (248°F).
S There is the correct ratio between Crankshaft Posi-
tion (CKP) sensor pulses and CMP sensor pulses.
S DTCs P0106, P0107, P0108, P0117, P0118,
P0122, P0123, P0336, P0337, P0341, P0342 and
P0502 are not set.
Action Taken When the DTC Sets
S The MIL will illuminate after two consecutive ignition
cycles in which the diagnostic runs with the fault
active.
Or
S The MIL will illuminate immediately and flash if mis-
fire is present.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault
within the freeze frame conditions that the DTC
failed.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S The DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent can also be the result of a defective reluctor
wheel. Remove the CKP sensor and inspect the reluctor
wheel through the sensor mount hole. Check for porosity
and the condition of wheel. If the DTC is intermittent refer
to”Symptoms Diagnosis” in this section.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
3. A visual/physical inspection should include check-
ing the following components:
S The wiring for proper connections, pinches or
cuts.
S The ECM grounds for being clean and tight.
S The vacuum hoses for splits, kinks, and proper
connections as shown on the Vehicle Emission
Information label. Check thoroughly for any type
of leak or restriction.
S For air leaks at the throttle body mounting area
and intake manifold sealing surfaces.
5. When all the accumulators are relatively equal, then
the misfire is being caused by something that af-
fects the entire engine. When they are not then the
misfire is being caused by something that is specif-
ic to two or more cylinders.
6. Whenever the misfire is not present operating the
vehicle may be necessary to duplicate the condi-
tions in the Freeze Frame Data in order to detect
misfire. Depending on the engine load, the condi-
tions may have to be maintained for up to 20 sec-
onds. Whenever the misfire accumulators start to
increment, then misfire is present. A history misfire
counter will store the number of misfires that have
occurred until the DTC is cleared.
ENGINE CONTROLS 1F – 441
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0304
CYLINDER 4 MISFIRE
System Description
The Engine Control Module (ECM) monitors the crank-
shaft and camshaft positions to detect if the engine is mis-
firing. The ECM looks for a quick drop in crankshaft speed.
This test is executed in blocks of 100 engine revolution
tests. It may take between one to several tests to store a
Diagnostic Trouble Code (DTC) and illuminate the Mal-
function Indicator Lamp (MIL). Under light misfire condi-
tions, it may also take more than one trip to set a DTC. Se-
vere misfire will flash the MIL, indicating that catalyst
damage is possible.
Conditions for Setting the DTC
S Emission threshold is 3%.
S 20 engine cycles have occurred since cranking has
started.
S A/C compressor clutch has not just engaged or dis-
engaged.
S Engine load and engine speed is in a detectable
region and is at or above zero torque.
S Camshaft Position (CMP) sensor is in synchroniza-
tion.
S Exhaust Gas Recirculation (EGR) flow diagnostic is
not in progress.
S Fuel level is greater than 12% of rated tank capac-
ity.
S Decel Fuel Cutoff (DFCO) not active.
S Throttle position change is less than 3% per 125
ms.
S Vehicle has not encountered an abusive engine
speed of 7000 rpm.
S Crankshaft speed patters are normal.
S Throttle position is less than 3% when vehicle
speed is greater than 10 km/h (6 mph).
S Vehicle voltage is between 11 and 16 volts.
S Engine Coolant Temperature (ECT) is between
–7°C (19°F) and 120°C (248°F).
S There is the correct ratio between Crankshaft Posi-
tion (CKP) sensor pulses and CMP sensor pulses.
S DTCs P0106, P0107, P0108, P0117, P0118,
P0122, P0123, P0336, P0337, P0341, P0342 and
P0502 are not set.
Action Taken When the DTC Sets
S The MIL will illuminate after two consecutive ignition
cycles in which the diagnostic runs with the fault
active.
Or
S The MIL will illuminate immediately and flash if mis-
fire is present.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault
within the freeze frame conditions that the DTC
failed.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S The DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent can also be the result of a defective reluctor
wheel. Remove the CKP sensor and inspect the reluctor
wheel through the sensor mount hole. Check for porosity
and the condition of wheel. If the DTC is intermittent refer
to”Symptoms Diagnosis” in this section.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
3. A visual/physical inspection should include check-
ing the following components:
S The wiring for proper connections, pinches or
cuts.
S The ECM grounds for being clean and tight.
S The vacuum hoses for splits, kinks, and proper
connections as shown on the Vehicle Emission
Information label. Check thoroughly for any type
of leak or restriction.
S For air leaks at the throttle body mounting area
and intake manifold sealing surfaces.
5. When all the accumulators are relatively equal, then
the misfire is being caused by something that af-
fects the entire engine. When they are not then the
misfire is being caused by something that is specif-
ic to two or more cylinders.
6. Whenever the misfire is not present operating the
vehicle may be necessary to duplicate the condi-
tions in the Freeze Frame Data in order to detect
misfire. Depending on the engine load, the condi-
tions may have to be maintained for up to 20 sec-
onds. Whenever the misfire accumulators start to
increment, then misfire is present. A history misfire
counter will store the number of misfires that have
occurred until the DTC is cleared.
ENGINE CONTROLS 1F – 445
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0317
ROUGH ROAD SENSOR SOURCE NOT DETECTED
System Description
The Engine Control Module (ECM) identifies engine mis-
fire by detecting variations in crankshaft speed. Crank-
shaft speed variations can also occur when a vehicle is op-
erating over a rough road. The ECM receives rough road
signal by gravity sensing rough road (G) sensor or Elec-
tronic Brake Control Module (EBCM) if equipped with the
Anti–Lock Brake System (ABS). The ABS can detect if the
vehicle is on the rough surface based on wheel accelera-
tion/deceleration data supplied by each wheel speed sen-
sor. This information sent to the ECM by EBCM through
serial data line. The G sensor is vertical low g–accelera-
tion sensor. By sensing vertical acceleration caused by
bumps or portholes in the road, the ECM determine if the
changes in crankshaft speed are due to engine misfire or
are driveline induced. If the ECM can not receive any of
those signal, a historic Diagnostic Trouble Code (DTC) will
be stored.
Conditions for Setting the DTCS ECM can not detect any rough road source.
S Vehicle speed is greater than 5km/h (3.1 mph).
Action Taken When the DTC Sets
S The MIL will not illuminate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Failure Records buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S The DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An open signal circuit of G sensor or open serial data line
between the ECM and the EBCM will be the cause of this
DTC.
ENGINE CONTROLS 1F – 447
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0325
KNOCK SENSOR INTERNAL MALFUNCTION
System Description
The Knock Sensor (KS) system is used to detect engine
detonation, allowing the Engine Control Module (ECM) to
retard the ignition control spark timing based on the KS
signal being received. The KS produces an AC signal so
that under a no–knock condition the signal on the KS cir-
cuit measures about 0.007 volts AC. The KS signal’s am-
plitude and frequency depend upon the amount of knock
being experienced. The ECM contains a nonreplaceable
knock filter module called a Digitally Controlled Signal–to–
Noise Enhancement Filter (DSNEF) module. This filter
module in the ECM determines whether or not knock is oc-
curring by comparing the signal level on the KS circuit with
the voltage level on the noise channel. The noise channel
allows the ECM to reject any false knock signal by knowing
the amount of normal engine mechanical noise present.
Normal engine noise varies depending on engine speed
and load. When the ECM determines that an abnormally
low noise channel voltage level is being experienced,
Diagnostic Trouble Code (DTC) P0325 will set.
Conditions for Setting the DTC
S DSNEF A/D reading is less than 1.0% or greater
than 80% any of the 4 cylinders.
S Vacuum is less than the predetermined value (10 to
50 kPa, based on rpm).
S The rpm is greater than 1600.
S DTC(s) P0106, P0107, P0108 are not set.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Failure Records buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTCS A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Check and correct any abnormal engine noise before us-
ing the diagnostic table.
Any circuitry, that is suspected as causing the complaint,
should be thoroughly checked for the following conditions:
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal–to–wire connection
S Physical damage to the wiring harness
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. If the conditions for the test as described above are
met, a DTC P0325 will set and MIL will illuminate.
4. If the engine has an internal knock or audible noise
that causes a knocking type noise on the engine
block, the knock sensor may be responding to the
noise.
6. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
DTC P0325 – Knock Sensor Internal Malfunction
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Was the check performed?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Install a scan tool to the Data Link Connector
(DLC).
2. Clear the Diagnostic Trouble Codes (DTCs).
3. Start the engine.
4. Operate the vehicle within the Conditions for
Setting the DTC as noted.
Is the DTC set again.–Go to Step 3Go to Step 6
1F – 450IENGINE CONTROLS
DAEWOO V–121 BL4
properly formed or damaged terminals, poor
terminal–to–wiring connections or physical damage
to the wiring harness.
7. The replacement ECM must be reprogrammed.Refer to the latest Techline procedure for ECM re-
programming.
DTC P0327 – Knock Sensor Circuit Fault
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Was the check performed?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Install a scan tool to the Data Link Connector
(DLC).
2. Clear the Diagnostic Trouble Codes (DTCs).
3. Start the engine.
4. Operate the vehicle within the Conditions for
Setting the DTC as noted.
Is the DTC set again.–Go to Step 3Go to Step 6
3Listen to the engine while rising and lowing the en-
gine speed.
Is a knock or audible noise present?–Go to Step 4Go to Step 5
4Repair mechanical engine problem or a loose brack-
et or components as needed.
Is the repair complete?–Go to Step 11–
51. Turn the ignition OFF.
2. Disconnect the Engine Control Module (ECM)
connector.
3. With a ohmmeter connected ground, measure
the resistance of the Knock Sensor (KS)
through the KS signal circuit, terminal M18.
Is the resistance between the specified value?90–110 kΩGo to Step 6Go to Step 8
6Check for a poor connection at the ECM connector
KS signal circuit and repair as needed.
Is the repair complete?–Go to Step 11Go to Step 7
71. Turn the ignition OFF.
2. Replace the ECM.
Is the repair complete?–Go to Step 11 –
8Check the KS connector for a poor connection and
repair as needed.
Is the repair complete?–Go to Step 11Go to Step 9
9Check the KS signal circuit for an open or a short to
ground or voltage and repair as needed.
Is the repair complete?–Go to Step 11–
101. Turn the ignition OFF.
2. Replace the KS.
Is the repair complete?–Go to Step 11–
1F – 468IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0401
EXHAUST GAS RECIRCULATION INSUFFICIENT FLOW
Circuit Description
An Exhaust Gas Recirculation (EGR) system is used to
lower Nitrogen Oxide (NOx) emission levels caused by
high combustion temperatures. It accomplishes this by
feeding small amounts of exhaust gases back into the
combustion chamber. When the air/fuel mixture is diluted
with the exhaust gases, combustion temperatures are re-
duced
A linear EGR valve is used on this system. The linear EGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum. The
valve controls exhaust flow going into the intake manifold
from the exhaust manifold through an orifice with an En-
gine Control Module (ECM) controlled pintle. The ECM
controls the pintle position using inputs from the Throttle
Position (TP) and Manifold Absolute Pressure (MAP) sen-
sors. The ECM then commands the EGR valve to operate
when necessary by controlling an ignition signal through
the ECM. This can be monitored on a scan tool as the De-
sired EGR Position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EGR valve, a voltage signal representing the
EGR valve pintle position is sent to the ECM. This feed-
back signal can also be monitored on a scan tool and is the
actual position of the EGR pintle. The Actual EGR Position
should always be near the commanded or Desired EGR
Position.
This diagnostic will determine if there is a reduction in EGR
flow.
Conditions for Setting the DTC
S DTCs P0106, P0107, P0108, P0117, P0118,
P0122, P0123, P0201, P0202, P0203, P0204,
P0351, P0352, P0402, P0404, P1404, P0405,
P0406 and P0502 are not set.
S Test in Decel Fuel Cutoff (DFCO) mode.
S Barometric Pressure (BARO) is greater than 72
kPa (10.4 psi).
S Vehicle speed is greater than 18 km/h (11.2
mph).
S A/C clutch/transmission clutch are unchanged.
S Rpm is between 1400 and 3000 for manual
transaxle.
S Rpm is between 1300 and 2900 for automatic
transaxle.
S Compensated MAP is with 10.3 to 32 kpa (1.5 to
4.6 psi) range.
S Start test
S Throttle position (TP) sensor is less then 1%.
S EGR is less than 1%.
S Change in MAP is less than 1.0 kpa (0.15 psi)Note : Test will be aborted when:
S Change in vehicle speed is greater than 5km/h (3.1
mph).
S Rpm is increased more than 75.
S EGR opened less than 90% commanded position.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will store conditions which were present
when the DTC set as Failure Records data only.
This information will not be stored in the Freeze
Frame data.
S A history Diagnostic Trouble Code (DTC) is stored.
S EGR is disabled.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
The EGR Decel Filter value can be a great aid in determin-
ing if a problem exists and to verify repairs. The EGR De-
cel Filter is an average of the difference in the expected
MAP change and the actual MAP change caused by open-
ing the EGR valve during a deceleration, and is used to de-
termine when the MIL is illuminated. By driving the vehicle
up to approximately 97 km/h (60 mph) and decelerating to
32 km/h (20 mph), it can be determined if the EGR system
is OK, partially restricted, or fully restricted.
A more negative number (less than –3) indicates that the
system is working normally, whereas a positive number in-
dicates that the system is being restricted and that the ex-
pected amount of EGR flow is was not seen. A number
that falls between negative 3 and positive 2 indicates that
the system is partially restricted but not restricted enough
to cause an emissions impact.
The EGR Decel Filter value should always be at –3 or low-
er. If the EGR Decel Filter number becomes more positive
(towards 0 or more), then the EGR system is becoming re-
stricted. Look for possible damage to the EGR pipe or for
a restriction caused by carbon deposits in the EGR pas-
sages or on the EGR valve.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
1F – 484IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0420
CATALYST OXYGEN SENSOR LOW EFFICIENCY
Circuit Description
In order to control exhaust emissions of Hydrocarbons
(HC), Carbon Monoxide (CO) and Nitrogen Oxide (NOx),
a Three–Way Catalytic Converter (TWC) is used. The cat-
alyst within the converter promotes a chemical reaction
which oxidizes the HC and CO present in the exhaust gas,
converting them into harmless water vapor and carbon
dioxide, it also reduces NOx, converting it into nitrogen.
The catalytic converter also has the ability to store oxygen.
The Engine Control Module (ECM) has the capability to
monitor this process using a Heated
Rear Heated Oxygen Sensor (HO2S2) located in the ex-
haust stream past the TWC. The HO2S2 produces an out-
put signal which indicates the oxygen storage capacity of
the catalyst; this in turn indicates the catalyst’s ability to
convert exhaust emissions effectively. The ECM monitors
the catalyst efficiency by first allowing the catalyst to heat
up, waiting for a stabilization period while the engine is id-
ling, and then adding and removing fuel while monitoring
the reaction of the HO2S2. When the catalyst is function-
ing properly, the HO2S2 response to the extra fuel is slow
compared to the Front Heated Oxygen Sensor (HO2S1).
When the HO2S2 response is close to that of the HO2S1,
the Oxygen storage capability or efficiency of the catalyst
is considered to be bad, and the Malfunction Indicator
Lamp (MIL) will illuminate.
Conditions for Setting the DTC
S Oxygen storage capacity index time is less than 0.3
seconds.
S Before idle test, the vehicle needs to be driven for
at least:
S 15 seconds at airflow is greater than 9.2 g/sec.
for manual transaxle.
S 11 seconds at airflow is greater than 12 g/sec
for automatic transaxle.
S Oxygen Sensor Capacity test condition:
S Closed loop stoichiometry.
S Purge concentration learned.
S Engine is running more than 330 seconds.
S Airflow is between 2.5 and 7.25 g/sec.
S Throttle Position (TP) sensor is less than 1.5%.
S Intake Air Temperature (IAT) is between –7°C
(19.4°F) and 105°C (221°F).
S Barometric pressure (BARO) is greater than 72 kPa
(10.4 psi).
S Catalyst temperature is between 500°C (932°F)
and 850°C (1562°F) for automatic transaxle.
S Catalyst temperature is between 450°C (842°F)
and 850°C (1562°F) for automatic transaxle.
S Closed Loop integrator change is less than 0.03.
S Idle time is less than 1 minute.
S Vehicle speed is less than 3 km/h (1.9 mph).S Block Learn Mode is learned.
S Above condition is stabilized for 5 seconds.
Note : Test is aborted for this idle if:
S Change in engine speed is greater than 80 rpm.
S A/C status changed.
S Cooling fan status changed.
S Insufficient air/fuel shift.
S DTC(s) P0106, P0107, P0108, P0117, P0118,
P0122, P0123, P0131, P0132, P0133, P1133,
P0134, P0135, P0137, P0138, P0140, P0141,
P1167, P1171, P0171, P0172, P0201, P0202,
P0203, P0204, P0300, P0336, P0337, P0341,
P0342, P0351, P0352, P0402, P0404, P1404,
P0405, P0406, P0443, P0502, P0506, P0507, and
P0562 are not set.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
The catalyst test may abort due to a change in the engine
load. Do not change the engine load (i.e. A/C, coolant fan,
heater motor) while a catalyst test is in progress.
An intermittent problem may be caused by a poor connec-
tion, rubbed–through wire insulation, or a wire that is bro-
ken inside the insulation.
Any circuitry, that is suspected as causing the intermittent
complaint, should be thoroughly checked for the following
conditions:
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal–to–wire connection
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1F – 486IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0443
EVAPORATIVE EMISSION SYSTEM PURGE SOLENOID
CONTROL CIRCUIT
System Description
The Evaporative Emission (EVAP) system includes the
following components:
S Fuel tank
S Fuel tank pressure sensor.
S Fuel pipes and hoses.
S Fuel vapor lines.
S Fuel cap
S EVAP canister.
S Purge lines.
S EVAP emission canister purge solenoid valve.
S EVAP service port.
The EVAP purge canister solenoid is controlled by the En-
gine Control Module (ECM). The ECM applies a ground to
the EVAP purge canister solenoid. The ECM determines
when to activate the EVAP canister purge solenoid de-
pending on operating conditions, including Throttle Posi-
tion (TP), engine speed, Engine Coolant Temperature
(ECT) and ambient temperature.
The Diagnostic Trouble Code will detect an open or short
circuit.
Conditions for Setting the DTC
S Ignition ON.
S Ignition voltage is greater than 11 v.
Action Taken When the DTC SetsS The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using a scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Using Freeze Frame and/or Failure Records data may aid
in locating an intermittent condition. If the DTC cannot be
duplicated, the information included in the Freeze Frame
and/or Failure Records data can be useful in determining
how many miles since the DTC set. The Fail Counter and
the Pass Counter can also be used to determine how
many ignition cycles the diagnostic reported a pass and/or
a fail. Operate the vehicle within the same freeze frame
conditions (rpm, load, vehicle speed, temperature, etc.)
that were noted. This will isolate when the DTC failed.