1F – 304IENGINE CONTROLS
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
81. Turn the ignition OFF.
2. Disconnect the ECM and check the Wheel
speed sensor signal circuit for high resistance,
an open, a low voltage, or a short to the sensor
ground circuit and repair as needed.
Is the repair complete?–Go to Step 14Go to Step 9
9Check the Wheel speed sensor signal circuit for a
poor connection at the ECM and repair as needed.
Is the repair complete?–Go to Step 14Go to Step 13
10Check for a poor connection at the Wheel speed
sensor and repair as needed.
Is the repair complete?–Go to Step 14Go to Step 11
11Replace the Wheel speed sensor.
Is the repair complete?–Go to Step 14–
121. Turn the ignition OFF.
2. Disconnect the ECM.
3. Turn the ignition ON.
4. Check the Wheel speed sensor signal circuit
for a short to voltage or a short to the 5 volt
reference circuit and repair as needed.
Is the repair complete?–Go to Step 14Go to Step 13
131. Turn the ignition OFF.
2. Replace the ECM.
Is the repair complete?–Go to Step 14–
141. Using the scan tool, clear the DTCs.
2. Start the engine and idle at normal operating
temperature.
3. Operate the vehicle within the conditions for
setting this DTC as specified in the supporting
text.
Does the scan tool indicate that this diagnostic ran
and passed?–Go to Step 15Go to Step 2
15Check if any additional DTCs are set.
Are any DTCs displayed that have not been diag-
nosed?–Go to
Applicable DTC
tableSystem OK
1F – 308IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1402
EXHAUST GAS RECIRCULATION BLOCKED
Circuit Description
An Exhaust Gas Re–circulation (EGR) system is used to
lower oxides of nitrogen (NOx) emission levels caused by
high combustion temperatures. It accomplishes this by
feeding small amounts of exhaust gases back into the
combustion chamber. When the air/fuel mixture is diluted
with the exhaust gases, combustion temperatures are re-
duced.
A linear EGR valve is used on this system. The linear EGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum. The
valve controls exhaust flow going into the intake manifold
from the exhaust manifold through an orifice with a engine
control module(ECM) controlled pintle. The ECM controls
the pintle position using inputs from the Throttle Position
(TP) and the Manifold Absolute Pressure (MAP) sensor.
The ECM then commands the EGR valve to operate when
necessary by controlling an ignition signal through the
ECM. This can be monitored on a scan tool as the Desired
EGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EGR valve, a voltage signal representing the
EGR valve pintle position is sent to the ECM. This feed-back signal can also be monitored on a scan tool and is the
actual position of the EGR pintle. The actual EGR position
should always be near the commanded or Desired EGR
position.
This Diagnostic Trouble Code(DTC) will detect an open or
short circuit.
Conditions for Setting the DTC
S The vehicle is part load.
S The engine controls system is in closed loop.
S Engine Coolant Temperature(ECT) is greater than
60°C(140°F).
S Intake Air Temperature(IAT) is greater than
15°C(59°F).
S Manifold Absolute Pressure is greater than 75kPA.
S The EGR is greater than 10%.
S Mass Air Flow is between 71~174mg/tdc.
S Engine Speed Is Between 1,950~2,600rpm.
S DTCs P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0131, P0300, P0335,
P0336, P0341, P0342, P1671, P1672, P1673 are
NOT SET.
S EGR is disabled.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
1F – 310IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1403
EXHAUST GAS RECIRCULATION VALVE FAILURE
Circuit Description
An Exhaust Gas Re–circulation (EGR) system is used to
lower oxides of nitrogen (NOx) emission levels caused by
high combustion temperatures. It accomplishes this by
feeding small amounts of exhaust gases back into the
combustion chamber. When the air/fuel mixture is diluted
with the exhaust gases, combustion temperatures are re-
duced.
A linear EGR valve is used on this system. The linear EGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum. The
valve controls exhaust flow going into the intake manifold
from the exhaust manifold through an orifice with a engine
control module(ECM) controlled pintle. The ECM controls
the pintle position using inputs from the Throttle Position
(TP) and the Manifold Absolute Pressure (MAP) sensor.
The ECM then commands the EGR valve to operate when
necessary by controlling an ignition signal through the
ECM. This can be monitored on a scan tool as the Desired
EGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EGR valve, a voltage signal representing the
EGR valve pintle position is sent to the ECM. This feed-back signal can also be monitored on a scan tool and is the
actual position of the EGR pintle. The actual EGR position
should always be near the commanded or Desired EGR
position.
This Diagnostic Trouble Code(DTC) will detect an open or
short circuit.
Conditions for Setting the DTC
S The vehicle is part load.
S The engine controls system is in closed loop.
S Engine Coolant Temperature(ECT) is greater than
60°C(140°F).
S Intake Air Temperature(IAT) is greater than
15°C(59°F).
S Manifold Absolute Pressure is greater than 75kPA.
S The open EGR value is higher than 10%.
S Mass Air Flow is between 71~174mg/tdc.
S Engine Speed Is Between 1,950~2,600rpm.
S EGR potentiometer voltage is less than 0.4V.
S EGR potentiometer voltage is higher than 1.75V or
integral term of EGR controller blocked in high or
low limit.
S DTCs P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0131, P0300, P0335,
P0336, P0341, P0342, P1671, P1672, P1673 are
NOT SET.
ENGINE CONTROLS 1F – 345
DAEWOO V–121 BL4
DTCIlluminate MIL Type Description
P0327Knock Sensor Circuit FaultCnlNo
P033658X Crank Position Sensor Extra/Missing PulsesEYe s
P033758X Crank Position Sensor No SignalAYe s
P0341Camshaft Position Sensor RationalityEYe s
P0342Camshaft Position Sensor No SignalAYe s
P0351Ignition Control Circuit A Fault (Cylinder 1 and 4)AYe s
P0352Ignition Control Circuit B Fault (Cylinder 2 and 3)AYe s
P0401Exhaust Gas Recirculation Insufficient FlowCnlNo
P0402Exhaust Gas Recirculation Excessive FlowEYe s
P0404Exhaust Gas Recirculation Open Valve Position ErrorEYe s
P0405Exhaust Gas Recirculation Pintle Position Low VoltageEYe s
P0406Exhaust Gas Recirculation Pintle Position High VoltageEYe s
P0420Catalyst Oxygen Sensor Low EfficiencyAYe s
P0443Evaporative Emission System Purge Solenoid Control CircuitEYe s
P0461Fuel Level StuckCnlNo
P0462Fuel Level Low VoltageCnlNo
P0463Fuel Level High VoltageCnlNo
P0502Vehicle Speed Sensor No Signal (Engine Side)EYe s
P0506Idle Speed rpm Lower Than Desired Idle SpeedEYe s
P0507Idle Speed rpm Higher Than Desired Idle SpeedEYe s
P0532A/C Pressure Sensor Low VoltageCnlNo
P0533A/C Pressure Sensor High VoltageCnlNo
P0562System Voltage Too Low (Engine Side)CnlNo
P0563System Voltage Too High (Engine Side)CnlNo
P0601ECM Checksum Error (Engine Side)AYe s
P0602ECM Reprogram ErrorAYe s
P0607Lower Power Counter ErrorCnlNo
P0700Transaxle Control Module MalfunctionAYe s
P1106Manifold Absolute Pressure Intermittent High VoltageCnlNo
P1107Manifold Absolute Pressure Intermittent Low VoltageCnlNo
P 1111Intake Air Temperature Intermittent High VoltageCnlNo
P1112Intake Air Temperature Intermittent Low VoltageCnlNo
P1114Engine Coolant Temperature Intermittent Low VoltageCnlNo
P1115Engine Coolant Temperature Intermittent High VoltageCnlNo
P1121Throttle Position Sensor Intermittent High VoltageCnlNo
P1122Throttle Position Sensor Intermittent Low VoltageCnlNo
P1133Front Heated Oxygen Sensor (HO2S1) Too Few TransitionsEYe s
P1134Front Heated Oxygen Sensor (HO2S1) Transition RatioEYe s
P1167Front Heated Oxygen Sensor (HO2S1) Rich in Decel Fuel Cut–off (DFCO)AYe s
P1171Fuel Trim System Lean During Power EnrichmentBYe s
P133658X Crank Position Tooth Error Not LearnedAYe s
P1391G Sensor Rough Road RationalityCnlNo
ENGINE CONTROLS 1F – 355
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0112
INTAKE AIR TEMPERATURE LOW VOLTAGE
Circuit Description
The Intake Air Temperature (IAT) sensor uses a thermistor
to control the signal voltage to the Engine Control Module
(ECM). The ECM supplies a 5 volt reference and a ground
to the sensor. When the air is cold, the resistance is high;
therefore the IAT signal voltage will be high. If the intake
air is warm, resistance is low; therefore the IAT signal volt-
age will be low.
Conditions for Setting the DTC
S IAT is less than 149°C (300°F).
S Engine run time is greater than 120 seconds.
S Vehicles speed is greater than or equal to 50 km/h
(31 mph).
S DTC P0502 is not set.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive ignition cycle with a fail.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The ECM will substitute a default value for intake
air temperature. The scan tool will not show the
defaulted value.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
If the vehicle is at ambient temperature, compare the IAT
sensor to the Engine Coolant Temperature (ECT) sensor.
The IAT sensor and the ECT sensor should be relatively
close to each other.
Use the Temperature vs. Resistance Values table to eval-
uate the possibility of a skewed sensor. Refer to ”Temper-
ature vs. Resistance” in this section.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
4. This step simulates a DTC P0113 condition. If the
scan tool displays the specified value, the IAT sig-
nal circuit, the ECM are OK.
8. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
1F – 358IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0113
INTAKE AIR TEMPERATURE HIGH VOLTAGE
Circuit Description
The Intake Air Temperature (IAT) sensor uses a thermistor
to control the signal voltage to the Engine Control Module
(ECM). The ECM supplies a 5 volt reference and a ground
to the sensor. When the air is cold, the resistance is high;
therefore the IAT signal voltage will be high. If the intake
air is warm, resistance is low; therefore the IAT signal volt-
age will be low.
Conditions for Setting the DTC
S IAT is less than –38°C (–36°F).
S Vehicles speed is less than 25 km/h (16 mph).
S Engine run time is greater than 120 seconds.
S Engine Coolant Temperature (ECT) is above 70 °C
158 °F).
S Calculated air are flow is less than 15 g/second.
S DTC P0502, P0117, P0118 not set.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive ignition cycle with a fail.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The ECM will substitute a default value for intake
air temperature. The scan tool will not show the
defaulted value.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
S If the vehicle is at ambient temperature, compare
the IAT sensor to the Engine Coolant Temperature
(ECT) sensor. The IAT sensor and the ECT sensor
should be relatively close to each other.
S Use the Temperature vs. Resistance Values table
to evaluate the possibility of a skewed sensor. Re-
fer to ”Temperature vs. Resistance” in this section.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
4. This step simulates a DTC P0112. If the ECM
senses the change, the ECM and wiring are OK.
5. This step will determine if the reason the ECM did
not sense the change was due to a open ground or
signal circuit or malfunctioning ECM.
11. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
1F – 366IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0122
THROTTLE POSITION SENSOR LOW VOLTAGE
Circuit Description
The Engine Control Module (ECM) supplies a 5 volt refer-
ence voltage signal and a ground to the Throttle Position
(TP) sensor. The TP sensor sends a voltage signal back
to the ECM relative to the throttle plate opening. The volt-
age signal will vary from approximately 0.33 volts at closed
throttle, to over 4.3 volts at Wide Open Throttle (WOT).
The TP signal is used by the ECM for fuel control and for
most of the ECM controlled outputs. The TP signal is one
of the most important inputs used by the ECM for fuel con-
trol and most of the ECM controlled outputs.
Conditions for Setting the DTC
S TP sensor voltage indicates a throttle voltage less
than 0.14 volts.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The TP angle will default to 0% when the vehicle
speed is less than 3 km/h (2 mph) and 10% when
the vehicle speed is greater than 3 km/h (2 mph).
The scan tool will not display the default value.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
If the DTC P0122 cannot be duplicated, the information in-
cluded in the Freeze Frame data can be useful. Use a scan
tool information data to determine the status of the DTC.
If the dc occurs intermittently, using the Diagnostic table
may help isolate the problem.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. The TP sensor has an auto zeroing feature. If the
voltage reading is between 0.2 to 0.9 volts, the
ECM will assume the TP sensor is at a closed
throttle position (0%).
5. Simulates a high voltage signal which will identify
an open in the signal circuit.
6. If additional DTCs are set, check the 5v reference
circuits for a short to ground.
8. If the test light illuminates while probing the TP sig-
nal circuit, then the TP signal circuit is shorted to
ground.
11. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
ENGINE CONTROLS 1F – 369
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0123
THROTTLE POSITION SENSOR HIGH VOLTAGE
Circuit Description
The Engine Control Module (ECM) supplies a 5 volt refer-
ence voltage signal and a ground to the Throttle Position
(TP) sensor. The TP sensor sends a voltage signal back
to the ECM relative to the throttle plate opening. The volt-
age signal will vary from approximately 0.33 volts at closed
throttle, to over 4.3 volts at Wide Open Throttle (WOT).
The TP signal is used by the ECM for fuel control and for
most of the ECM controlled outputs. The TP signal is one
of the most important inputs used by the ECM for fuel con-
trol and most of the ECM controlled outputs.
Conditions for Setting the DTC
S TP sensor voltage indicates a throttle voltage great-
er than 4.9 volts.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The TP angle will default to 0% when the vehicle
speed is less than 3 km/h (2 mph) and 10% when
the vehicle speed is greater than 3 km/h (2 mph).
The scan tool will not display the default value.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
If the DTC P0123 cannot be duplicated, the information in-
cluded in the Freeze Frame data can be useful. Use a scan
tool information data to determine the status of the DTC.
If the dc occurs intermittently, using the Diagnostic table
may help isolate the problem.
With ignition ON and the throttle at closed position, the
voltage should read between 0.2 and 0.90 volts and in-
crease steadily to over 4.3 volts at WOT.
DTCs P0123 and P0113 stored at the same time could be
result of an open sensor ground circuit.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. With the throttle closed, the TP sensor voltage
should read less than 0.90 volts. If the TP sensor
voltage does not read less than 0.90 volts check for
a binding or sticking throttle cable.
4. With the TP sensor disconnected, the TP sensor
voltage should be less than 0.2 volts if the ECM
and wiring are OK.
5. Probing the ground circuit with a test light checks
the circuit for high resistance which will cause a
DTC P0123 to set.