
ENGINE CONTROLS 1F – 111
DAEWOO V–121 BL4
TROUBLE CODE DIAGNOSIS
(1.4L/1.6L DOHC)
CLEARING TROUBLE CODES
Notice : To prevent Engine Control Module (ECM) dam-
age, the key must be OFF when disconnecting or recon-
necting the power to the ECM (for example battery cable,
ECM pigtail connector, ECM fuse, jumper cables,
etc.).When the ECM sets a Diagnostic Trouble Code
(DTC), the Malfunction Indicator Lamp (MIL) lamp will be
turned on only for type A, B and E but a DTC will be stored
in the ECM’s memory for all types of DTC. If the problemis intermittent, the MIL will go out after 10 seconds if the
fault is no longer present. The DTC will stay in the ECM’s
memory until cleared by scan tool. Removing battery volt-
age for 10 seconds will clear some stored DTCs.
DTCs should be cleared after repairs have been com-
pleted. Some diagnostic tables will tell you to clear the
codes before using the chart. This allows the ECM to set
the DTC while going through the chart, which will help to
find the cause of the problem more quickly.
DIAGNOSTIC TROUBLE CODES (1.4L/1.6L DOHC)
DTCFunctionError
TypeIlluminate MIL
P0107Manifold Absolute Pressure Sensor Low VoltageAYES
P0108Manifold Absolute Pressure Sensor High VoltageAYES
P0112Intake Air Temperature Sensor Low VoltageEYES
P0113Intake Air Temperature Sensor High VoltageEYES
P0117Engine Coolant Temperature Sensor Low VoltageAYES
P0118Engine Coolant Temperature Sensor High VoltageAYES
P0122Throttle Position Sensor Low VoltageAYES
P0123Throttle Position Sensor High VoltageAYES
P0131Front Heated Oxygen Sensor Low VoltageAYES
P0132Front Heated Oxygen Sensor High VoltageAYES
P0133Front Heated Oxygen Sensor No ActivityEYES
P0135Front Heated Oxygen Sensor Heater Circuit Not FunctioningEYES
P0137Rear Heated Oxygen Sensor Low VoltageEYES
P0138Rear Heated Oxygen Sensor High VoltageEYES
P0140Rear Heated Oxygen Sensor No ActivityEYES
P0141Rear Heated Oxygen Sensor Heater MalfuctionEYES
P0171Fuel Trim System Too LeanEYES
P0172Fuel Trim System Too RichEYES
P0222Main Throttle Idle Actuactor (MTIA) Low VoltageAYES
P0223Main Throttle Idle Actuactor (MTIA) High VoltageAYES
P0261Injector 1 Low VoltageAYES
P0262Injector 1 High VoltageAYES
P0264Injector 2 Low VoltageAYES
P0265Injector 2 High VoltageAYES
P0267Injector 3 Low VoltageAYES
P0268Injector 3 High VoltageAYES
P0270Injector 4 Low VoltageAYES
P0271Injector 4 High VoltageAYES
P0300Multiple Cylinder Misfire (Catalyst Damage)ABLINKING

1F – 112IENGINE CONTROLS
DAEWOO V–121 BL4
DTCIlluminate MIL Error
Type Function
P0300Multiple Cylinder Misfire (Increase Emission)EYES
P0327Knock Sensor Circuit Fault (1.4L DOHC)CnlNO
P0327Knock Sensor Circuit Fault (1.6L DOHC)EYES
P0335Magnetic Crankshaft Position Sensor Electrical ErrorEYES
P033658X Crankshaft Position Sensor Extra/missing PulseEYES
P033758X Crankshaft Sensor No SignalEYES
P0341Camshaft Position Sensor RationalityEYES
P0342Camshaft Position Sensor No SignalEYES
P0351Ignition Signal Coil A FaultAYES
P0352Ignition Signal Coil B FaultAYES
P0400Exhaust Gas Recirculation Out of LimitEYES
P0404Exhaust Gas Recirculation (EGR) PpendEYES
P0405EGR Pintle Position Sensor Low VoltageEYES
P0406EGR Pintle Position Sensor High voltageEYES
P0420Catalyst Low EfficiencyAYES
P0444EVAP Purge Control Circuit No SignalEYES
P0445EVAP Purge Control Circuit FaultEYES
P0462Fuel Level Sensor Low Voltage (1.6L DOHC Only)CnlNO
P0463Fuel Level Sensor High Voltage (1.6L DOHC Only)CnlNO
P0480Low Speed Cooling Fan Relay Circuit Fault (1.4L DOHC)EYES
P0480Low Speed Cooling Fan Relay Circuit Fault (1.6L DOHC)CnlNO
P0481High Speed Cooling Fan Relay High Voltage (1.4L DOHC)EYES
P0481High Speed Cooling Fan Relay High Voltage (1.6L DOHC)CnlNO
P0501Vehicle Speed No Signal (M/T Only)AYES
P0510Throttle Positon Switch Circuit Fault (1.4L DOHC)CnlNO
P0510Throttle Positon Switch Circuit Fault (1.6L DOHC)AYES
P0532A/C Pressure Sensor Low VoltageCnlNO
P0533A/C Pressure Sensor High VoltageCnlNO
P0562System Voltage (Engine Side) Too LowCnlNO
P0563System Voltage (Engine Side) Too HighCnlNO
P0601Engine Control Module Checksum ErrorEYES
P0604Engine Control Module RAM ErrorEYES
P0605Engine Control Module INMVY Write ErrorEYES
P0656Fuel Level Gauge High Circuit FaultCnlNO
P1181Variable Intake Manifold Solenoid Low VoltageEYES
P1182Variable Intake Manifold Solenoid High VoltageEYES
P1230Fuel Pump Relay Low Voltage (1.4L DOHC)CnlNO
P1230Fuel Pump Relay Low Voltage (1.6L DOHC)AYES
P1231Fuel Pump Relay High Voltage (1.4L DOHC)CnlNO
P1231Fuel Pump Relay High Voltage (1.6L DOHC)AYES
P1320Crankshaft Segment Period Segment Adaptation At LimitEYES

ENGINE CONTROLS 1F – 113
DAEWOO V–121 BL4
DTCIlluminate MIL Error
Type Function
P1321Crankshaft Segment Period Tooth ErrorEYES
P1382Rough Road Data Invalid (Non ABS)CnlNO
P1382Rrough Road Data Invalid (ABS)CnlNO
P1385Rough Road Sensor Circuit Fault (Non ABS)CnlNO
P1402Exhaust Gas Recirculation BlockedEYES
P1403Exhaust Gas Recirculation Valve FailureEYES
P1404Exhaust Gas Recirculation (EGR) ClosedEYES
P1511Idle Charge Actuactor Circuit FaultEYES
P1512Idle Charge Actuactor Mechanical ErrorEYES
P1513Idle Charge Actuactor Functionnal ErrorCnlNO
P1537A/C Compressor Relay High VoltageCnlNO
P1538A/C Compressor Relay Low VoltageCnlNO
P1610Main Relay High Voltage (1.4L DOHC)CnlNO
P1610Main Relay High Voltage (1.6L DOHC)AYES
P1611Main Relay Low Voltage (1.4L DOHC)CnlNO
P1611Main Relay Low Voltage (1.6L DOHC)AYES
P1628Immobilizer No Successful CommunicationCnlNO
P1629Immobilizer Wrong ComputationCnlNO
P1660Malfunction Indicator Lamp(MIL) High VoltageEYES
P1661Malfunction Indicator Lamp(MIL) Low VoltageEYES

1F – 114IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0107
MANIFOLD ABSOLUTE PRESSURE SENSOR LOW
VOLTAGE
Circuit Description
The engine control module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure, which results
from engine load (intake manifold vacuum) and the rpm
changes; and converts these into voltage outputs. The
ECM sends a 5 volt–reference voltage to the MAP sensor.
As the manifold pressure changes, the output voltage of
the MAP sensor also changes. By monitoring the MAP
sensor output voltage, the ECM knows the manifold pres-
sure. A low–pressure (low voltage) output voltage will be
about 1.0 to 1.5 volts at idle, while higher pressure (high
voltage) output voltage will be about 4.5 to 4.8 at wide
open throttle (WOT). The MAP sensor is metric pressure,
allowing the ECM to make adjustments for different alti-
tudes.
Conditions for Setting the DTC
S This DTC can be stored in ”key–on” status.
(Case A)
S When the engine idling.
S No throttle position(TP) sensor MTIA fail conditions
present.
S Engine speed(rpm) is less than 2,500rpm.
S The MAP is less than 12.0 kPa.
(Case A)
S When the engine part load.
S The engine revolution speed is less than 4,000rpm.S No Throttle Position (TP) Sensor fails conditions
present.
S The Throttle Position (TP) angle greather than
30.0°.
S The MAP is less than 11.5 kPa.
S An open or low voltage condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmosphere pressure and the signal
voltage will be high.

ENGINE CONTROLS 1F – 115
DAEWOO V–121 BL4
The ECM as an indication of vehicle altitude uses this in-
formation. Comparison of this reading with a known good
vehicle with the same sensor is a good way to check the
accuracy of a suspect sensor. Readings should be the
same ± 0.4volt.
If a DTC P0107 is intermittent, refer to ”Manifold AbsolutePressure Check” in this section for further diagnosis.
If the connections are OK monitor the manifold absolute
pressure (MAP) sensor signal voltage while moving re-
lated connectors and the wiring harness. If the failure is in-
duced, the display on the scan tool will change. This may
help to isolate the location of an intermittent malfunction.
DTC P0107 – Manifold Absolute Pressure Sensor Low Voltage
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Connect the scan tool to the data link connec-
tor (DLC).
2. Turn the ignition switch to ON.
Does the scan tool show the manifold absolute pres-
sure (MAP) sensor voltage above the value speci-
fied?4VGo to Step 3Go to Step 4
31. Disconnect the vacuum line from the MAP sen-
sor.
2. Apply 88kPA (20in.of Hg) of vacuum to the
MAP sensor.
Does the scan tool show the MAP sensor voltage
within the value specified?1.0–1.5VGo to
”Diagnostic
Aids”Go to Step 4
41. Turn the ignition switch to LOCK.
2. Disconnect the MAP sensor connector.
3. Turn the ignition switch to ON.
4. Measure the voltage between the MAP sensor
connector terminals A and C.
Does the voltage measure within the value speci-
fied?4.5–5.5VGo to Step 5Go to Step 6
5Connect a fused jumper between the MAP sensor
connector terminals B and C.
Does the scan tool show the MAP sensor voltage
above the value specified?4VGo to Step 11Go to Step 9
6Measure the voltage between the MAP sensor con-
nector terminal A and ground.
Does the voltage measure within the value speci-
fied?4.5–5.5VGo to Step 7Go to Step 8
71. Turn the ignition switch to LOCK.
2. Check for open wires between the MAP sensor
connector terminal A and the ECM connector
terminal 13.
Is the problem found?–Go to Step 10Go to Step 12
81. Turn the ignition switch to LOCK.
2. Check for an open or short to ground in the
wire between the MAP sensor connector termi-
nal C and the ECM connector terminal 50.
Is the problem found ?–Go to Step 10Go to Step 12

1F – 116IENGINE CONTROLS
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
91. Turn the ignition switch to LOCK.
2. Check for an open or short to ground in the
wire between the MAP sensor connector termi-
nal B and the ECM connector terminal 75.
Is the problem found ?–Go to Step 10Go to Step 12
101. Repair the wire or the connector terminal as
needed.
2. Clear any DTCs from the ECM.
3. Perform the diagnostic system check.
Is the repair complete?–System OK–
111. Replace the manifold absolute pressure sen-
sor.
2. Clear any DTCs from the ECM.
3. Perform the diagnostic system check.
Is the replacement complete?–System OK–
12Replace the ECM.
Is the replacement complete?–Go to Step 13Go to Step 2
13Check if any additional DTCs are set.
Are any DTCs displaced that have not been diag-
nosed?–Go to
applicable DTC
tableSystem OK

ENGINE CONTROLS 1F – 117
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0108
MANIFOLD ABSOLUTE PRESSURE SENSOR HIGH
VOLTAGE
Circuit Description
The engine control module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure, which results
from engine load (intake manifold vacuum) and the rpm
changes; and converts these into voltage outputs. The
ECM sends a 5 volt–reference voltage to the MAP sensor.
As the manifold pressure changes, the output voltage of
the MAP sensor also changes. By monitoring the MAP
sensor output voltage, the ECM knows the manifold pres-
sure. A low–pressure (low voltage) output voltage will be
about 1.0 to 1.5 volts at idle, while higher pressure (high
voltage) output voltage will be about 4.5 to 4.8 at wide
open throttle (WOT). The MAP sensor is metric pressure,
allowing the ECM to make adjustments for different alti-
tudes.
Conditions for Setting the DTC
S This DTC can be stored in ”key–on” status.
S When the engine idling.
S Engine speed is greater than 700rpm.
S No throttle position sensor (TPS) fail conditions
present.
S The MAP is greater than 95kPA.
S A high voltage condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmosphere pressure and the signal
voltage will be high.
The ECM as an indication of vehicle altitude uses this in-
formation. Comparison of this reading with a known good
vehicle with the same sensor is a good way to check the
accuracy of a suspect sensor. Readings should be the
same ±0.4volt.
If a DTC P0108 is intermittent, refer to ”Manifold Absolute
Pressure Check” in this section for further diagnosis.
If the connections are OK monitor the manifold absolute
pressure(MAP) sensor signal voltage while moving re-
lated connectors and the wiring harness. If the failure is in-
duced, the display on the scan tool will change. This may
help to isolate the location of an intermittent malfunction.

1F – 118IENGINE CONTROLS
DAEWOO V–121 BL4
DTC P0108 – Manifold Absolute Pressure Sensor High Voltage
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Connect the scan tool to the data link connec-
tor (DLC).
2. Turn the ignition switch to ON.
Does the scan tool show the manifold absolute pres-
sure (MAP) sensor voltage above the value speci-
fied?4VGo to Step 3Go to Step 4
31. Disconnect the vacuum line from the MAP sen-
sor.
2. Apply 66kPA (20in.of Hg) of vacuum to the
MAP sensor.
Does the scan tool show the MAP sensor voltage
within the value specified?1.0–1.5VGo to
”Diagnostic
Aids”Go to Step 4
41. Turn the ignition switch to LOCK.
2. Disconnect the MAP sensor connector.
3. Turn the ignition switch to ON.
4. Measure the voltage between the MAP sensor
connector terminals A and C.
Does the voltage measure within the value speci-
fied?4.5–5.5VGo to Step 5Go to Step 6
5Connect a fused jumper between the MAP sensor
connector terminals B and C.
Does the scan tool show the MAP sensor voltage
above the value specified?4VGo to Step 11Go to Step 9
6Measure the voltage between the MAP sensor con-
nector terminal A and ground.
Does the voltage measure within the value speci-
fied?4.5–5.5VGo to Step 7Go to Step 8
71. Turn the ignition switch to LOCK.
2. Check for open wires between the MAP sensor
connector terminal A and the ECM connector
terminal 13.
Is the problem found?–Go to Step 10Go to Step 12
81. Turn the ignition switch to LOCK.
2. Check for an open or short to ground in the
wire between the MAP sensor connector termi-
nal C and the ECM connector terminal 50.
Is the problem found ?–Go to Step 10Go to Step 12
91. Turn the ignition switch to LOCK.
2. Check for an open or short to ground in the
wire between the MAP sensor connector termi-
nal B and the ECM connector terminal 75.
Is the problem found ?–Go to Step 10Go to Step 12