1A – 2 GENERAL ENGINE INFORMATION
DAEWOO M-150 BL2
DESCRIPTION AND SYSTEMOPERATION
CLEANLINESS AND CARE
An automobile engine is a combination of many ma-
chined, honed, polished and lapped surfaces with toler-
ances that are measured in the ten–thousandths of an
inch. When any internal engine parts are serviced, care
and cleanliness are important. A liberal coating of en-
gine oil should be applied to friction areas during assem-
bly, to protect and lubricate the surfaces on initial
operation. Proper cleaning and protection of machined
surfaces and friction areas is part of the repair proce-
dure. This is considered standard shop practice even if
not specifically stated.
Whenever valve train components are removed for ser-
vice, they should be kept in order. They should be
installed in the same locations, and with the same mat-
ing surfaces, as when they were removed. Battery
cables should be disconnected before any major work is
performed on the engine. Failure to disconnect cablesmay result in damage to wire harness or other electrical
parts.
ON-ENGINE SERVICE
Caution: Disconnect the negative battery cable be-
fore removing or installing any electrical unit, or
when a tool or equipment could easily come in con-
tact with exposed electrical terminals. Disconnect-
ing this cable will help prevent personal injury and
damage to the vehicle. The ignition must also be in
B unless otherwise noted.
Notice: Any time the air cleaner is removed, the intake
opening should be covered. This will protect against ac-
cidental entrance of foreign material, which could follow
the intake passage into the cylinder and cause exten-
sive damage when the engine is started.
1F–8 ENGINE CONTROLS
DAEWOO M-150 BL2
tions. With the ignition ON and the engine not running,
the Engine Control Module (ECM) will read the manifold
pressure as barometric pressure and adjust the air/fuel
ratio accordingly. This compensation for altitude allows
the system to maintain driving performance while hold-
ing emissions low. The barometric function will update
periodically during steady driving or under a wide open
throttle condition. In the case of a fault in the barometric
portion of the MAP sensor, the ECM will set to the de-
fault value.
A failure in the MAP sensor circuit sets a diagnostic
trouble codes P0107, P0108 or P0106.
ENGINE CONTROL MODULE
The Engine Control Module (ECM), is the control center
of the fuel injection system. It constantly looks at the in-
formation from various sensors and controls the sys-
tems that affect the vehicle’s performance. The ECM
also performs the diagnostic functions of the system. It
can recognize operational problems, alert the driver
through the Malfunction Indicator Lamp (MIL), and store
diagnostic trouble code(s) which identify the problem
areas to aid the technician in making repairs.
There are no serviceable parts in the ECM. The calibra-
tions are stored in the ECM in the Programmable Read
Only Memory (PROM).
The ECM supplies either 5 or 12 volts to power the sen-
sors or switches. This is done through resistance in the
ECM which are so high in value that a test light will not
come on when connected to the circuit. In some cases,
even an ordinary shop voltmeter will not give an accu-
rate reading because its resistance is too low. You must
use a digital voltmeter with a 10 megohm input imped-
ance to get accurate voltage readings. The ECM con-
trols output circuits such as the fuel injectors, the Idle Air
Control (IAC) valve, the A/C clutch relay, etc., by control-
ling the ground circuit through transistors or a device
called a “quad-driver.”
FUEL INJECTOR
The Multi-port Fuel Injection (MFI) assembly is a sole-
noid-operated device controlled by the Engine Control
Module (ECM) that meters pressurized fuel to a single
engine cylinder. The ECM energizes the fuel injector or
solenoid to a normally closed ball or pintle valve. This al-
lows fuel to flow into the top of the injector, past the ball
or pintle valve, and through a recessed flow director
plate at the injector outlet.
The director plate has six machined holes that control
the fuel flow, generating a conical spray pattern of finely
atomized fuel at the injector tip. Fuel from the tip is di-
rected at the intake valve, causing it to become further
atomized and vaporized before entering the combustion
chamber. A fuel injector which is stuck partially open
would cause a loss of fuel pressure after the engine is
shut down. Also, an extended crank time would be no-
ticed on some engines. Dieseling could also occur be-cause some fuel could be delivered to the engine after
the ignition is turned off.
FUEL CUT-OFF SWITCH
The fuel cutoff switch is a safety device. In the event of a
collision or a sudden impact, it automatically cuts off the
fuel supply and activates the door lock relay. After the
switch has been activated, it must be reset in order to
restart the engine. Reset the fuel cutoff switch by press-
ing the rubber top of the switch. The switch is located
near the right side of the passenger’s seat.
KNOCK SENSOR
The knock sensor detects abnormal knocking in the en-
gine. The sensor is mounted in the engine block near the
cylinders. The sensor produces an AC output voltage
which increases with the severity of the knock. This sig-
nal is sent to the Engine Control Module (ECM). The
ECM then adjusts the ignition timing to reduce the spark
knock.
VARIABLE RELUCTANCE (VR)
SENSOR
The variable reluctance sensor is commonly refered to
as an “inductive” sensor.
The VR wheel speed sensor consists of a sensing unit
fixed to the left side front macpherson strut, for non-ABS
vehicle.
The ECM uses the rough road information to enable or
disable the misfire diagnostic. The misfire diagnostic
can be greatly affected by crankshaft speed variations
caused by driving on rough road surfaces. The VR sen-
sor generates rough road information by producing a
signal which is proportional to the movement of a small
metal bar inside the sensor.
If a fault occurs which causes the ECM to not receive
rough road information between 30 and 70 km/h (1.8
and 43.5 mph), Diagnostic Trouble Code (DTC) P1391
will set.
OCTANE NUMBER CONNECTOR
The octane number connector is a jumper harness that
signal to the engine control module (ECM) the octane
rating of the fuel.
The connector is located on the next to the ECM. There
are two different octane number connector settings
available. The vehicle is shipped from the factory with a
label attached to the jumper harness to indicate the oc-
tane rating setting of the ECM. The ECM will alter fuel
delivery and spark timing based on the octane number
setting. The following table shows which terminal to
jump on the octane number connector in order to
achieve the correct fuel octane rating. Terminal 2 is
ground on the octane number connector. The find the
1F–186 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F230
DIAGNOSTIC TROUBLE CODE (DTC) – P1402 ELECTRIC EXHAUST GAS
RECIRCULATION BLOCKED
Circuit Description
An Electric Exhaust Gas Re-circulation (EEGR) system
is used to lower oxides of nitrogen (NOX) emission lev-
els caused by high combustion temperatures. It a ac-
complishes this by feeding small amounts of exhaust
gases back into the combustion chamber. When the air/
fuel mixture is diluted with the exhaust gases, combus-
tion temperatures are reduced.
A EEGR valve is used on this system. The linear EEGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum.
The valve controls exhaust flow going into the intake
manifold from the exhaust manifold fhrough an orifice
with a engine control module(ECM) controlled pintle.
The ECM controls the pintle position using inputs from
the Throttle Position (TP) and the Manifold Absolute
Pressure (MAP) sensor. The ECM then commands the
EEGR valve to operate when necessary by controlling
an ignition signal through the ECM. This can be moni-
tored on a scan tool as the Desired EEGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EEGR valve, a voltage signal representing
the EEGR valve pintle position is sent to the ECM. This
feedback signal can also be monitored on a scan tool
and is the actual position of the EEGR pintle. The actual
EEGR position should always be near the commanded
or Desired EEGR position.
ThisDiagnostic Trouble Code(DTC) will detect an open
or short circuit.
Conditions for Setting the DTC
Engine Coolant Temperature(ECT) is greater than
80°C(176°F).Intake Air Temperature(IAT) is greater than 15°C
(59°F).
Manifold Absolute Pressure is greater than 75kPA.
The EEGR differential rate is less than 3%.
Mass Air Flow is between 92 ~157mg/tdc.
Engine Speed Is Between 2,500~2,900rpm.
DTCs P0107, P0108, P0112, P0113, P0117, P0118,
P0122, P0123, P0131, P0300, P0335, P0336,
P0341, P0342, P1671, P1672, P1673 are NOT SET.
EEGR is disabled.
Action Taken When the DTC Sets
The Malfunction Indicator Lamp (MIL) will illuminate.
The ECM will record operating conditions at the time
the diagnostic fails. This information will be stored in
the Freeze Frame and Failure Records buffers.
A history DTC is stored.
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm-up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Due to moisture associated with exhaust systems, the
EEGR valve may freeze and stick in cold weather at
times. After the vehicle is brought into a warm shop for
repairs, the valve warms and the problem disappears.
By watching the Actual EEGR and desired EEGR posi-
tions on a cold vehicle with a scan tool, the fault can be
1F–188 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F230
DIAGNOSTIC TROUBLE CODE (DTC) – P1403 ELECTRIC EXHAUST GAS
RECIRCULATION VALVE FAILURE
Circuit Description
An Electric Exhaust Gas Re-circulation (EEGR) system
is used to lower oxides of nitrogen (NOX) emission lev-
els caused by high combustion temperatures. It a ac-
complishes this by feeding small amounts of exhaust
gases back into the combustion chamber. When the air/
fuel mixture is diluted with the exhaust gases, combus-
tion temperatures are reduced.
A linear EEGR valve is used on this system. The linear
EEGR valve is designed to accurately supply exhaust
gases to the engine without the use of intake manifold
vacuum. The valve controls exhaust flow going into the
intake manifold from the exhaust manifold fhrough an
orifice with a engine control module(ECM) controlled
pintle. The ECM controls the pintle position using inputs
from the Throttle Position (TP) and the Manifold Abso-
lute Pressure (MAP) sensor. The ECM then commands
the EEGR valve to operate when necessary by control-
ling an ignition signal through the ECM. This can be
monitored on a scan tool as the Desired EEGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EEGR valve, a voltage signal representing
the EEGR valve pintle position is sent to the ECM. This
feedback signal can also be monitored on a scan tool
and is the actual position of the EEGR pintle. The actual
EEGR position should always be near the commanded
or Desired EEGR position.
ThisDiagnostic Trouble Code(DTC) will detect an open
or short circuit.
Conditions for Setting THE DTC
Engine Coolant Temperature(ECT) is greater than
80°C(176°F).Intake Air Temperature(IAT) is greater than 15°C
(59°F).
Manifold Absolute Pressure is greater than 75kPA.
The open EEGR value is higher than 3%.
Mass Air Flow is between 92 ~157mg/tdc.
Engine Speed Is Between 2,500~2,900rpm.
EEGR potentiometer voltage is less than 0.4V.
EEGR potentiometer voltage is higher than 1.75V or
integral term of EEGR controller blocked in high or
low limit.
DTCs P0107, P0108, P0112, P0113, P0117, P0118,
P0122, P0123, P0131, P0300, P0335, P0336,
P0341, P0342, P1671, P1672, P1673 are NOT SET.
Action Taken When the DTC Sets
The Malfunction Indicator Lamp (MIL) will illuminate.
The ECM will record operating conditions at the time
the diagnostic fails. This information will be stored in
the Freeze Frame and Failure Records buffers.
A history DTC is stored.
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm-up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Due to moisture associated with exhaust systems, the
EEGR valve may freeze and stick in cold weather at
times. After the vehicle is brought into a warm shop for
1F–192 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F230
DIAGNOSTIC TROUBLE CODE (DTC) – P0404 ELECTRIC EXHAUST GAS
RECIRCULATION OPENED
Circuit Description
An Electric Exhaust Gas Re-circulation (EEGR) system
is used to lower oxides of nitrogen (NOX) emission lev-
els caused by high combustion temperatures. It a ac-
complishes this by feeding small amounts of exhaust
gases back into the combustion chamber. When the air/
fuel mixture is diluted with the exhaust gases, combus-
tion temperatures are reduced.
A linear EEGR valve is used on this system. The linear
EEGR valve is designed to accurately supply exhaust
gases to the engine without the use of intake manifold
vacuum. The valve controls exhaust flow going into the
intake manifold from the exhaust manifold fhrough an
orifice with a engine control module(ECM) controlled
pintle. The ECM controls the pintle position using inputs
from the Throttle Position (TP) and the Manifold Abso-
lute Pressure (MAP) sensor. The ECM then commands
the EEGR valve to operate when necessary by control-
ling an ignition signal through the ECM. This can be
monitored on a scan tool as the Desired EEGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EEGR valve, a voltage signal representing
the EEGR valve pintle position is sent to the ECM. This
feedback signal can also be monitored on a scan tool
and is the actual position of the EEGR pintle. The actual
EEGR position should always be near the commanded
or Desired EEGR position.
ThisDiagnostic Trouble Code(DTC) will detect an open
or short circuit.Conditions for Setting THE DTC
EEGR circuit low voltage.
Action Taken When the DTC Sets
The Malfunction Indicator Lamp (MIL) will illuminate.
The ECM will record operating conditions at the time
the diagnostic fails. This information will be stored in
the Freeze Frame and Failure Records buffers.
A history DTC is stored.
EEGR is disabled.
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm-up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Due to moisture associated with exhaust systems, the
EEGR valve may freeze and stick in cold weather at
times. After the vehicle is brought into a warm shop for
repairs, the valve warms and the problem disappears.
By watching the Actual EEGR and desired EEGR posi-
tions on a cold vehicle with a scan tool, the fault can be
easily verified. Check the Freeze Frame data to deter-
mine if the DTC set when the vehicle was cold by view-
ing the Engine Coolant Temperature (ECT).
1F–196 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F230
DIAGNOSTIC TROUBLE CODE (DTC) – P1404 ELECTRIC EXHAUST GAS
RECIRCULATION CLOSED
Circuit Description
An Electric Exhaust Gas Re-circulation (EEGR) system
is used to lower oxides of nitrogen (NOX) emission lev-
els caused by high combustion temperatures. It a ac-
complishes this by feeding small amounts of exhaust
gases back into the combustion chamber. When the air/
fuel mixture is diluted with the exhaust gases, combus-
tion temperatures are reduced.
A linear EEGR valve is used on this system. The linear
EEGR valve is designed to accurately supply exhaust
gases to the engine without the use of intake manifold
vacuum. The valve controls exhaust flow going into the
intake manifold from the exhaust manifold fhrough an
orifice with a engine control module(ECM) controlled
pintle. The ECM controls the pintle position using inputs
from the Throttle Position (TP) and the Manifold Abso-
lute Pressure (MAP) sensor. The ECM then commands
the EEGR valve to operate when necessary by control-
ling an ignition signal through the ECM. This can be
monitored on a scan tool as the Desired EEGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EEGR valve, a voltage signal representing
the EEGR valve pintle position is sent to the ECM. This
feedback signal can also be monitored on a scan tool
and is the actual position of the EEGR pintle. The actual
EEGR position should always be near the commanded
or Desired EEGR position.
ThisDiagnostic Trouble Code(DTC) will detect an open
or short circuit.Conditions for Setting THE DTC
EEGR circuit high voltage.
Action Taken When The DTCs Sets
The Malfunction Indicator Lamp (MIL) will illuminate.
The ECM will record operating conditions at the time
the diagnostic fails. This information will be stored in
the Freeze Frame and Failure Records buffers.
A history DTC is stored.
EEGR is disabled.
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm-up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Disconnecting the ECM battery feed for more than 10
seconds.
Diagnostic Aids
Due to moisture associated with exhaust systems, the
EEGR valve may freeze and stick in cold weather at
times. After the vehicle is brought into a warm shop for
repairs, the valve warms and the problem disappears.
By watching the Actual EEGR and desired EEGR posi-
tions on a cold vehicle with a scan tool, the fault can be
easily verified. Check the Freeze Frame data to deter-
mine if the DTC set when the vehicle was cold by view-
ing the Engine Coolant Temperature (ECT).
1F–200 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F230
DIAGNOSTIC TROUBLE CODE (DTC) – P0405 EEGR PINTLE POSITION
SENSOR LOW VOLTAGE
Circuit Description
An Electric Exhaust Gas Re-circulation (EEGR) system
is used to lower oxides of nitrogen (NOX) emission lev-
els caused by high combustion temperatures. It a ac-
complishes this by feeding small amounts of exhaust
gases back into the combustion chamber. When the air/
fuel mixture is diluted with the exhaust gases, combus-
tion temperatures are reduced.
A linear EEGR valve is used on this system. The linear
EEGR valve is designed to accurately supply exhaust
gases to the engine without the use of intake manifold
vacuum. The valve controls exhaust flow going into the
intake manifold from the exhaust manifold fhrough an
orifice with a engine control module(ECM) controlled
pintle. The ECM controls the pintle position using inputs
from the Throttle Position (TP) and the Manifold Abso-
lute Pressure (MAP) sensor. The ECM then commands
the EEGR valve to operate when necessary by control-
ling an ignition signal through the ECM. This can be
monitored on a scan tool as the Desired EEGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EEGR valve, a voltage signal representing
the EEGR valve pintle position is sent to the ECM. This
feedback signal can also be monitored on a scan tool
and is the actual position of the EEGR pintle. The actual
EEGR position should always be near the commanded
or Desired EEGR position.
ThisDiagnostic Trouble Code(DTC) will detect an open
or short circuit.Conditions for Setting THE DTC
EEGR voltage is less than 0.01V.
EEGR potentiometer circuit low voltage.
Action Taken When The DTCs Sets
The Malfunction Indicator Lamp (MIL) will illuminate.
The ECM will record operating conditions at the time
the diagnostic fails. This information will be stored in
the Freeze Frame and Failure Records buffers.
A history DTC is stored.
EEGR is disabled.
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm-up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Disconnecting the ECM battery feed for more than 10
seconds.
Diagnostic Aids
Due to moisture associated with exhaust systems, the
EEGR valve may freeze and stick in cold weather at
times. After the vehicle is brought into a warm shop for
repairs, the valve warms and the problem disappears.
By watching the Actual EEGR and desired EEGR posi-
tions on a cold vehicle with a scan tool, the fault can be
easily verified. Check the Freeze Frame data to deter-
mine if the DTC set when the vehicle was cold by view-
ing the Engine Coolant Temperature (ECT).
1F–204 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F230
DIAGNOSTIC TROUBLE CODE (DTC) – P0406 EEGR PINTLE POSITION
SENSOR HIGH VOLTAGE
Circuit Description
An Electric Exhaust Gas Re-circulation (EEGR) system
is used to lower oxides of nitrogen (NOX) emission lev-
els caused by high combustion temperatures. It a ac-
complishes this by feeding small amounts of exhaust
gases back into the combustion chamber. When the air/
fuel mixture is diluted with the exhaust gases, combus-
tion temperatures are reduced.
A linear EEGR valve is used on this system. The linear
EEGR valve is designed to accurately supply exhaust
gases to the engine without the use of intake manifold
vacuum. The valve controls exhaust flow going into the
intake manifold from the exhaust manifold fhrough an
orifice with a engine control module(ECM) controlled
pintle. The ECM controls the pintle position using inputs
from the Throttle Position (TP) and the Manifold Abso-
lute Pressure (MAP) sensor. The ECM then commands
the EEGR valve to operate when necessary by control-
ling an ignition signal through the ECM. This can be
monitored on a scan tool as the Desired EEGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EEGR valve, a voltage signal representing
the EEGR valve pintle position is sent to the ECM. This
feedback signal can also be monitored on a scan tool
and is the actual position of the EEGR pintle. The actual
EEGR position should always be near the commanded
or Desired EEGR position.
This Diagnostic Trouble Code(DTC) will detect an open
or short circuit.Conditions for Setting THE DTC
EEGR voltage is higher than 4.99V.
EEGR potentiometer circuit high voltage.
Action Taken When The DTCs Sets
The Malfunction Indicator Lamp (MIL) will illuminate.
The ECM will record operating conditions at the time
the diagnostic fails. This information will be stored in
the Freeze Frame and Failure Records buffers.
A history DTC is stored.
EEGR is disabled.
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm-up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Due to moisture associated with exhaust systems, the
EEGR valve may freeze and stick in cold weather at
times. After the vehicle is brought into a warm shop for
repairs, the valve warms and the problem disappears.
By watching the Actual EEGR and desired EEGR posi-
tions on a cold vehicle with a scan tool, the fault can be
easily verified. Check the Freeze Frame data to deter-
mine if the DTC set when the vehicle was cold by view-
ing the Engine Coolant Temperature (ECT).