perform its many functions. The EMIC module incor-
porates a blue-green digital Vacuum Fluorescent Dis-
play (VFD) for displaying odometer and trip
odometer information, as well as several warning
messages and certain diagnostic information. In addi-
tion to instrumentation and indicators, the EMIC has
the hardware and software needed to provide the fol-
lowing features:
²Chime Warning Service- A chime tone gener-
ator on the EMIC electronic circuit board provides
audible alerts to the vehicle operator and eliminates
the need for a separate chime module. (Refer to 8 -
ELECTRICAL/CHIME WARNING SYSTEM -
DESCRIPTION).
²Panel Lamps Dimming Service- The EMIC
provides a hard wired 12-volt Pulse-Width Modulated
(PWM) output that synchronizes the dimming level
of the radio display, gear selector indicator, heater-air
conditioner control, and all other dimmable lighting
on the panel lamps dimmer circuit with that of the
cluster illumination lamps and VFD.
The EMIC houses four analog gauges and has pro-
visions for up to twenty-four indicators (Fig. 2). The
EMIC includes the following analog gauges:
²Coolant Temperature Gauge
²Fuel Gauge
²Speedometer
²Tachometer
Some of the EMIC indicators are automatically
configured when the EMIC is connected to the vehi-
cle electrical system for compatibility with certain
optional equipment or equipment required for regula-
tory purposes in certain markets. While each EMIC
may have provisions for indicators to support every
available option, the configurable indicators will not
be functional in a vehicle that does not have the
equipment that an indicator supports. The EMIC
includes provisions for the following indicators (Fig.
2):
²Airbag Indicator (with Airbag System only)
²Antilock Brake System (ABS) Indicator
(with ABS only)
²Brake Indicator
²Charging Indicator
²Coolant Low Indicator (with Diesel Engine
only)
²Cruise Indicator (with Speed Control Sys-
tem only)
²Four-Wheel Drive Full Time Indicator (with
Selec-Trac Transfer Case only)
²Four-Wheel Drive Low Mode Indicator
²Four-Wheel Drive Part Time Indicator
²Front Fog Lamp Indicator (with Front Fog
Lamps only)
²High Beam Indicator
²Low Fuel Indicator²Low Oil Pressure Indicator
²Malfunction Indicator Lamp (MIL)
²Overdrive-Off Indicator (with Automatic
Transmission only)
²Rear Fog Lamp Indicator (with Rear Fog
Lamps only)
²Seatbelt Indicator
²Security Indicator (with Vehicle Theft
Security System only)
²Sentry Key Immobilizer System (SKIS)
Indicator (with SKIS only)
²Transmission Overtemp Indicator (with
Automatic Transmission only)
²Turn Signal (Right and Left) Indicators
²Wait-To-Start Indicator (with Diesel Engine
only)
²Water-In-Fuel Indicator (with Diesel Engine
only)
Each indicator in the EMIC is illuminated by a
dedicated Light Emitting Diode (LED) that is sol-
dered onto the EMIC electronic circuit board. The
LEDs are not available for service replacement and,
if damaged or faulty, the entire EMIC must be
replaced. Cluster illumination is accomplished by
dimmable incandescent back lighting, which illumi-
nates the gauges for visibility when the exterior
lighting is turned on. Each of the incandescent bulbs
is secured by an integral bulb holder to the electronic
circuit board from the back of the cluster housing.
The incandescent bulb/bulb holder units are available
for service replacement.
Hard wired circuitry connects the EMIC to the
electrical system of the vehicle. These hard wired cir-
cuits are integral to several wire harnesses, which
are routed throughout the vehicle and retained by
many different methods. These circuits may be con-
nected to each other, to the vehicle electrical system
and to the EMIC through the use of a combination of
soldered splices, splice block connectors, and many
different types of wire harness terminal connectors
and insulators. Refer to the appropriate wiring infor-
mation. The wiring information includes wiring dia-
grams, proper wire and connector repair procedures,
further details on wire harness routing and reten-
tion, as well as pin-out and location views for the
various wire harness connectors, splices and grounds.
The EMIC modules for this model are serviced only
as complete units. The EMIC module cannot be
adjusted or repaired. If a gauge, an LED indicator,
the VFD, the electronic circuit board, the circuit
board hardware, the cluster overlay, or the EMIC
housing are damaged or faulty, the entire EMIC mod-
ule must be replaced. The cluster lens, hood and
mask unit and the individual incandescent lamp
bulbs with holders are available for service replace-
ment.
KJINSTRUMENT CLUSTER 8J - 3
INSTRUMENT CLUSTER (Continued)
OPERATION
The ElectroMechanical Instrument Cluster (EMIC)
is designed to allow the vehicle operator to monitor
the conditions of many of the vehicle components and
operating systems. The gauges and indicators in the
EMIC provide valuable information about the various
standard and optional powertrains, fuel and emis-
sions systems, cooling systems, lighting systems,
safety systems and many other convenience items.
The EMIC is installed in the instrument panel so
that all of these monitors can be easily viewed by the
vehicle operator when driving, while still allowing
relative ease of access for service. The microproces-sor-based EMIC hardware and software uses various
inputs to control the gauges and indicators visible on
the face of the cluster. Some of these inputs are hard
wired, but most are in the form of electronic mes-
sages that are transmitted by other electronic mod-
ules over the Programmable Communications
Interface (PCI) data bus network. (Refer to 8 -
ELECTRICAL/ELECTRONIC CONTROL MOD-
ULES/COMMUNICATION - OPERATION).
The EMIC microprocessor smooths the input data
using algorithms to provide gauge readings that are
accurate, stable and responsive to operating condi-
tions. These algorithms are designed to provide
Fig. 2 EMIC Gauges & Indicators
1 - SKIS INDICATOR 16 - REAR FOG LAMP INDICATOR
2 - AIRBAG INDICATOR 17 - ABS INDICATOR
3 - LOW FUEL INDICATOR 18 - CHARGING INDICATOR
4 - WAIT-TO-START INDICATOR 19 - WATER-IN-FUEL INDICATOR
5 - OVERDRIVE-OFF INDICATOR 20 - ENGINE TEMPERATURE GAUGE
6 - COOLANT LOW INDICATOR 21 - ODOMETER/TRIP ODOMETER SWITCH BUTTON
7 - SEATBELT INDICATOR 22 - ODOMETER/TRIP ODOMETER DISPLAY
8 - TACHOMETER 23 - CRUISE INDICATOR
9 - LEFT TURN INDICATOR 24 - LOW OIL PRESSURE INDICATOR
10 - HIGH BEAM INDICATOR 25 - TRANSMISSION OVERTEMP INDICATOR
11 - RIGHT TURN INDICATOR 26 - PART TIME 4WD INDICATOR
12 - SPEEDOMETER 27 - BRAKE INDICATOR
13 - FRONT FOG LAMP INDICATOR 28 - FULL TIME 4WD INDICATOR
14 - 4WD LOW MODE INDICATOR 29 - SECURITY INDICATOR
15 - MALFUNCTION INDICATOR LAMP (MIL) 30 - FUEL GAUGE
8J - 4 INSTRUMENT CLUSTERKJ
INSTRUMENT CLUSTER (Continued)
illuminates when it is provided a path to ground by
the instrument cluster transistor. The instrument
cluster will turn on the ABS indicator for the follow-
ing reasons:
²Bulb Test- Each time the ignition switch is
turned to the On position the ABS indicator is illu-
minated by the cluster for about three seconds as a
bulb test.
²ABS Lamp-On Message- Each time the clus-
ter receives a lamp-on message from the CAB, the
ABS indicator will be illuminated. The indicator
remains illuminated until the cluster receives a
lamp-off message from the CAB, or until the ignition
switch is turned to the Off position, whichever occurs
first.
²Communication Error- If the cluster receives
no lamp-on or lamp-off messages from the CAB for
six consecutive seconds, the ABS indicator is illumi-
nated. The indicator remains illuminated until the
cluster receives a valid message from the CAB, or
until the ignition switch is turned to the Off position,
whichever occurs first.
²Actuator Test- Each time the instrument clus-
ter is put through the actuator test, the ABS indica-
tor will be turned on, then off again during the bulb
check portion of the test to confirm the functionality
of the LED and the cluster control circuitry.
²ABS Diagnostic Test- The ABS indicator is
blinked on and off by lamp-on and lamp-off messages
from the CAB during the performance of the ABS
diagnostic tests.
The CAB continually monitors the ABS circuits
and sensors to decide whether the system is in good
operating condition. The CAB then sends the proper
lamp-on or lamp-off messages to the instrument clus-
ter. If the CAB sends a lamp-on message after the
bulb test, it indicates that the CAB has detected a
system malfunction and/or that the ABS system has
become inoperative. The CAB will each store a Diag-
nostic Trouble Code (DTC) for any malfunction it
detects. Each time the ABS indicator fails to light
due to an open or short in the cluster ABS indicator
circuit, the cluster sends a message notifying the
CAB of the condition, then the instrument cluster
and the CAB will each store a DTC. For proper diag-
nosis of the antilock brake system, the CAB, the PCI
data bus, or the message inputs to the instrument
cluster that control the ABS indicator, a DRBIIIt
scan tool is required. Refer to the appropriate diag-
nostic information.AIRBAG INDICATOR
DESCRIPTION
An airbag indicator is standard equipment on all
instrument clusters. However, the instrument cluster
is programmed to automatically enable this indicator
only on vehicles equipped with the airbag system,
which is not available in some markets. The airbag
indicator is located above the fuel gauge and to the
left of the tachometer in the instrument cluster. The
airbag indicator consists of a stencil-like cutout of the
words ªAIR BAGº in the opaque layer of the instru-
ment cluster overlay. The dark outer layer of the
overlay prevents the indicator from being clearly vis-
ible when it is not illuminated. A red Light Emitting
Diode (LED) behind the cutout in the opaque layer of
the overlay causes the ªAIR BAGº text to appear in
red through the translucent outer layer of the over-
lay when it is illuminated from behind by the LED,
which is soldered onto the instrument cluster elec-
tronic circuit board. The airbag indicator is serviced
as a unit with the instrument cluster.
OPERATION
The airbag indicator gives an indication to the
vehicle operator when the airbag system is faulty or
inoperative. The airbag indicator is controlled by a
transistor on the instrument cluster circuit board
based upon cluster programming and electronic mes-
sages received by the cluster from the Airbag Control
Module (ACM) over the Programmable Communica-
tions Interface (PCI) data bus. The airbag indicator
Light Emitting Diode (LED) is completely controlled
by the instrument cluster logic circuit, and that logic
will only allow this indicator to operate when the
instrument cluster receives a battery current input
on the fused ignition switch output (run-start) cir-
cuit. Therefore, the LED will always be off when the
ignition switch is in any position except On or Start.
The LED only illuminates when it is provided a path
to ground by the instrument cluster transistor. The
instrument cluster will turn on the airbag indicator
for the following reasons:
²Bulb Test- Each time the ignition switch is
turned to the On position the airbag indicator is illu-
minated for about six seconds. The entire six second
bulb test is a function of the ACM.
²ACM Lamp-On Message- Each time the clus-
ter receives a lamp-on message from the ACM, the
airbag indicator will be illuminated. The indicator
remains illuminated for about twelve seconds or until
the cluster receives a lamp-off message from the
ACM, whichever is longer.
²Communication Error- If the cluster receives
no airbag messages for six consecutive seconds, the
airbag indicator is illuminated. The indicator
8J - 12 INSTRUMENT CLUSTERKJ
ABS INDICATOR (Continued)
above the fuel gauge and to the left of the tachometer
in the instrument cluster. The coolant low indicator
consists of a stencil-like cutout of the International
Control and Display Symbol icon for ªLow Engine
Coolantº in the opaque layer of the instrument clus-
ter overlay. The dark outer layer of the overlay pre-
vents the indicator from being clearly visible when it
is not illuminated. An amber Light Emitting Diode
(LED) behind the cutout in the opaque layer of the
overlay causes the icon to appear in amber through
the translucent outer layer of the overlay when the
indicator is illuminated from behind by the LED,
which is soldered onto the instrument cluster elec-
tronic circuit board. The coolant low indicator is ser-
viced as a unit with the instrument cluster.
OPERATION
The coolant low indicator gives an indication to the
vehicle operator when the diesel engine coolant level
is low. This indicator is controlled by a transistor on
the instrument cluster circuit board based upon clus-
ter programming and a hard wired input received by
the cluster from the engine coolant level switch. The
coolant low indicator Light Emitting Diode (LED) is
completely controlled by the instrument cluster logic
circuit, and that logic will only allow this indicator to
operate when the instrument cluster receives a bat-
tery current input on the fused ignition switch out-
put (run-start) circuit. Therefore, the LED will
always be off when the ignition switch is in any posi-
tion except On or Start. The LED only illuminates
when it is provided a path to ground by the instru-
ment cluster transistor. The instrument cluster will
turn on the coolant low indicator for the following
reasons:
²Bulb Test- Each time the ignition switch is
turned to the On position the coolant low indicator is
illuminated for about three seconds as a bulb test.
²Engine Coolant Level Switch Input- Each
time the cluster detects ground on the low coolant
fluid level sense circuit (engine coolant level switch
closed = engine coolant level low) the cluster applies
an algorithm to confirm that the input is correct and
not the result of coolant sloshing in the coolant bot-
tle. The cluster tests the status of the circuit about
seven milliseconds after ignition On, and about once
every second thereafter, then uses an internal
counter to count up or down. When the counter accu-
mulates thirty ground inputs on the circuit, the cool-
ant low indicator will be illuminated. The indicator
remains illuminated until the low coolant fluid level
sense input to the cluster is an open circuit (engine
coolant level switch open = engine coolant level full),
or until the ignition switch is turned to the Off posi-
tion, whichever occurs first.²Engine Coolant Level Switch Input Fault-
The engine coolant level switch also features a 3.3
kilohm diagnostic resistor connected in parallel
between the switch input and output to provide the
cluster with verification that the low coolant fluid
level sense circuit is not open or shorted. If the clus-
ter does not see a proper input on the low coolant
fluid level sense circuit, it will suspend coolant low
indicator operation. The indicator operation remains
suspended until the low coolant fluid level sense cir-
cuit fault is resolved.
²Actuator Test- Each time the cluster is put
through the actuator test, the coolant low indicator
will be turned on, then off again during the bulb
check portion of the test to confirm the functionality
of the LED and the cluster control circuitry.
The engine coolant level switch on the coolant bot-
tle provides a hard wired ground input to the instru-
ment cluster circuitry through the low coolant fluid
level sense circuit whenever the level of the coolant
in the bottle is low. For further diagnosis of the cool-
ant low indicator or the instrument cluster circuitry
that controls the LED, (Refer to 8 - ELECTRICAL/
INSTRUMENT CLUSTER - DIAGNOSIS AND
TESTING). For proper diagnosis of the engine cool-
ant level switch input to the instrument cluster that
control the coolant low indicator, a DRBIIItscan tool
is required. Refer to the appropriate diagnostic infor-
mation.
CRUISE INDICATOR
DESCRIPTION
A cruise indicator is standard equipment on all
instrument clusters, but is only functional on vehi-
cles equipped with the optional speed control system.
The cruise indicator is located near the lower edge of
the instrument cluster, between the tachometer and
the speedometer. The cruise indicator consists of a
stencil-like cutout of the word ªCRUISEº in the
opaque layer of the instrument cluster overlay. The
dark outer layer of the overlay prevents the indicator
from being clearly visible when it is not illuminated.
A green Light Emitting Diode (LED) behind the cut-
out in the opaque layer of the overlay causes the
ªCRUISEº text to appear in green through the trans-
lucent outer layer of the overlay when it is illumi-
nated from behind by the LED, which is soldered
onto the instrument cluster electronic circuit board.
When the exterior lighting is turned On, the illumi-
nation intensity of the cruise indicator is dimmable,
which is adjusted using the panel lamps dimmer con-
trol ring on the left control stalk of the multi-func-
tion switch. The cruise indicator is serviced as a unit
with the instrument cluster.
8J - 16 INSTRUMENT CLUSTERKJ
COOLANT LOW INDICATOR (Continued)
gauge, a DRBIIItscan tool is required. Refer to the
appropriate diagnostic information.
FRONT FOG LAMP INDICATOR
DESCRIPTION
A front fog lamp indicator is standard equipment
on all instrument clusters, but is only functional on
vehicles equipped with the optional front fog lamps.
The front fog lamp indicator is located above the
engine temperature gauge and to the right of the
speedometer in the instrument cluster. The front fog
lamp indicator consists of a stencil-like cutout of the
International Control and Display Symbol icon for
ªFront Fog Lightº in the opaque layer of the instru-
ment cluster overlay. The dark outer layer of the
overlay prevents the indicator from being clearly vis-
ible when it is not illuminated. A green Light Emit-
ting Diode (LED) behind the cutout in the opaque
layer of the overlay causes the icon to appear in
green through the translucent outer layer of the
overlay when it is illuminated from behind by the
LED, which is soldered onto the instrument cluster
electronic circuit board. When the exterior lighting is
turned On, the illumination intensity of the front fog
lamp indicator is dimmable, which is adjusted using
the panel lamps dimmer control ring on the left con-
trol stalk of the multi-function switch. The front fog
lamp indicator is serviced as a unit with the instru-
ment cluster.
OPERATION
The front fog lamp indicator gives an indication to
the vehicle operator whenever the front fog lamps
are illuminated. This indicator is controlled by a
transistor on the instrument cluster electronic circuit
board based upon the cluster programming and elec-
tronic messages received by the cluster from the
Body Control Module (BCM) over the Programmable
Communications Interface (PCI) data bus. The front
fog lamp indicator Light Emitting Diode (LED) is
completely controlled by the instrument cluster logic
circuit, and that logic will allow this indicator to
operate whenever the instrument cluster receives a
battery current input on the fused B(+) circuit.
Therefore, the LED can be illuminated regardless of
the ignition switch position. The LED only illumi-
nates when it is provided a path to ground by the
instrument cluster transistor. The instrument cluster
will turn on the front fog lamp indicator for the fol-
lowing reasons:
²Front Fog Lamp-On Message- Each time the
cluster receives a front fog lamp-on message from the
BCM indicating the front fog lamps are turned On,
the front fog lamp indicator will be illuminated. Theindicator remains illuminated until the cluster
receives a front fog lamp-off message from the BCM.
²Actuator Test- Each time the cluster is put
through the actuator test, the front fog lamp indica-
tor will be turned on, then off again during the bulb
check portion of the test to confirm the functionality
of the LED and the cluster control circuitry.
The BCM continually monitors the exterior light-
ing (multi-function) switch to determine the proper
outputs to the front fog lamp relay. The BCM then
sends the proper front fog lamp indicator lamp-on
and lamp-off messages to the instrument cluster. For
further diagnosis of the front fog lamp indicator or
the instrument cluster circuitry that controls the
indicator, (Refer to 8 - ELECTRICAL/INSTRUMENT
CLUSTER - DIAGNOSIS AND TESTING). For
proper diagnosis of the front fog lamp system, the
BCM, the PCI data bus, or the electronic message
inputs to the instrument cluster that control the
front fog lamp indicator, a DRBIIItscan tool is
required. Refer to the appropriate diagnostic infor-
mation.
FUEL GAUGE
DESCRIPTION
A fuel gauge is standard equipment on all instru-
ment clusters. The fuel gauge is located in the left
lower corner of the instrument cluster, to the left of
the tachometer. The fuel gauge consists of a movable
gauge needle or pointer controlled by the instrument
cluster circuitry and a fixed 90 degree scale on the
cluster overlay that reads left-to-right from E (or
Empty) to F (or Full). An International Control and
Display Symbol icon for ªFuelº is located on the clus-
ter overlay, in the center of the gauge directly above
the hub of the gauge needle. An arrowhead pointed
to the left side of the vehicle is imprinted on the clus-
ter overlay next to the ªFuelº icon in the fuel gauge
to provide the driver with a reminder as to the loca-
tion of the fuel filler access. The fuel gauge graphics
are dark blue and black against a beige field, except
for a single red graduation at the far left (Empty)
end of the gauge scale, making them clearly visible
within the instrument cluster in daylight. When illu-
minated from behind by the panel lamps dimmer
controlled cluster illumination lighting with the exte-
rior lamps turned On, the blue graphics appear blue
and the red graphics appear red. The orange gauge
needle is internally illuminated. Gauge illumination
is provided by replaceable incandescent bulb and
bulb holder units located on the instrument cluster
electronic circuit board. The fuel gauge is serviced as
a unit with the instrument cluster.
KJINSTRUMENT CLUSTER 8J - 19
ENGINE TEMPERATURE GAUGE (Continued)
OPERATION
The fuel gauge gives an indication to the vehicle
operator of the level of fuel in the fuel tank. This
gauge is controlled by the instrument cluster circuit
board based upon cluster programming and elec-
tronic messages received by the cluster from the
Powertrain Control Module (PCM) over the Program-
mable Communications Interface (PCI) data bus. The
fuel gauge is an air core magnetic unit that receives
battery current on the instrument cluster electronic
circuit board through the fused ignition switch out-
put (run-start) circuit whenever the ignition switch is
in the On or Start positions. The cluster is pro-
grammed to move the gauge needle back to the low
end of the scale after the ignition switch is turned to
the Off position. The instrument cluster circuitry
controls the gauge needle position and provides the
following features:
²Percent Tank Full Message- Each time the
cluster receives a message from the PCM indicating
the percent tank full, the cluster moves the gauge
needle to the relative fuel level position on the gauge
scale. The PCM applies an algorithm to the input
from the fuel tank sender to dampen gauge needle
movement against the negative effect that fuel slosh-
ing within the fuel tank can have on accurate inputs
to the PCM.
²Less Than 12.5 Percent Tank Full Message-
Each time the cluster receives messages from the
PCM indicating the percent tank full is less than
12.5 (one-eighth), the gauge needle is moved to the
proper position on the gauge scale and the low fuel
indicator is illuminated. The low fuel indicator
remains illuminated until the cluster receives mes-
sages from the PCM indicating that the percent tank
full is greater than 12.5 (one-eighth), or until the
ignition switch is turned to the Off position, which-
ever occurs first.
²Less Than Empty Percent Tank Full Mes-
sage- Each time the cluster receives a message from
the PCM indicating the percent tank full is less than
empty, the gauge needle is moved to the far left (low)
end of the gauge scale and the low fuel indicator is
illuminated immediately. This message would indi-
cate that the fuel tank sender input to the PCM is a
short circuit.
²More Than Full Percent Tank Full Message
- Each time the cluster receives a message from the
PCM indicating the percent tank full is more than
full, the gauge needle is moved to the far left (low)
end of the gauge scale and the low fuel indicator is
illuminated immediately. This message would indi-
cate that the fuel tank sender input to the PCM is an
open circuit.
²Actuator Test- Each time the cluster is put
through the actuator test, the gauge needle will beswept to the gauge calibration points on the gauge
scale in sequence in order to confirm the functional-
ity of the gauge and the cluster control circuitry.
The PCM continually monitors the fuel tank
sender input to determine the fuel level. The PCM
then applies an algorithm to the input and sends the
proper percent tank full messages to the instrument
cluster. For further diagnosis of the fuel gauge or the
instrument cluster circuitry that controls the gauge,
(Refer to 8 - ELECTRICAL/INSTRUMENT CLUS-
TER - DIAGNOSIS AND TESTING). For proper
diagnosis of the fuel tank sender, the PCM, the PCI
data bus, or the electronic message inputs to the
instrument cluster that control the fuel gauge, a
DRBIIItscan tool is required. Refer to the appropri-
ate diagnostic information.
GATE AJAR INDICATOR
DESCRIPTION
A gate ajar indicator is standard equipment on all
instrument clusters. The gate ajar indicator consists
of the word ªgateº, which appears in place of the
odometer/trip odometer information in the Vacuum-
Fluorescent Display (VFD) of the instrument cluster.
The VFD is part of the cluster electronic circuit
board, and is visible through a cutout located near
the lower edge of the speedometer dial face in the
instrument cluster. The dark outer layer of the over-
lay prevents the VFD from being clearly visible when
it is not illuminated. The word ªgateº appears in the
same blue-green color and at the same lighting level
as the odometer/trip odometer information through
the translucent outer layer of the overlay when it is
illuminated by the instrument cluster electronic cir-
cuit board. The gate ajar indicator is serviced as a
unit with the instrument cluster.
OPERATION
The gate ajar indicator gives an indication to the
vehicle operator that the rear tailgate may be open
or not completely latched. This indicator is controlled
by the instrument cluster electronic circuit board
based upon cluster programming and electronic mes-
sages received by the cluster from the Body Control
Module (BCM) over the Programmable Communica-
tions Interface (PCI) data bus. The gate ajar indica-
tor function of the Vacuum Fluorescent Display
(VFD) is completely controlled by the instrument
cluster logic circuit, and that logic will only allow
this indicator to operate when the instrument cluster
receives a battery current input on the fused ignition
switch output (run-start) circuit. Therefore, the VFD
gate ajar indicator will always be off when the igni-
tion switch is in any position except On or Start. The
8J - 20 INSTRUMENT CLUSTERKJ
FUEL GAUGE (Continued)
sage inputs to the instrument cluster that control the
glass ajar indicator, a DRBIIItscan tool is required.
Refer to the appropriate diagnostic information.
HIGH BEAM INDICATOR
DESCRIPTION
A high beam indicator lamp is standard equipment
on all instrument clusters. The high beam indicator
is located near the upper edge of the instrument clus-
ter overlay, between the tachometer and the speed-
ometer. The high beam indicator consists of a stencil-
like cutout of the International Control and Display
Symbol icon for ªHigh Beamº in the opaque layer of
the instrument cluster overlay. The dark outer layer
of the overlay prevents the indicator from being
clearly visible when the it is not illuminated. A blue
Light Emitting Diode (LED) behind the cutout in the
opaque layer of the overlay causes the icon to appear
in blue through the translucent outer layer of the
overlay when it is illuminated from behind by the
LED, which is soldered onto the instrument cluster
electronic circuit board. The high beam indicator is
serviced as a unit with the instrument cluster.
OPERATION
The high beam indicator gives an indication to the
vehicle operator whenever the headlamp high beams
are illuminated. This indicator is controlled by a
transistor on the instrument cluster electronic circuit
board based upon the cluster programming and elec-
tronic messages received by the cluster from the
Body Control Module (BCM) over the Programmable
Communications Interface (PCI) data bus. The high
beam indicator Light Emitting Diode (LED) is com-
pletely controlled by the instrument cluster logic cir-
cuit, and that logic will allow this indicator to
operate whenever the instrument cluster receives a
battery current input on the fused B(+) circuit.
Therefore, the LED can be illuminated regardless of
the ignition switch position. The LED only illumi-
nates when it is provided a path to ground by the
instrument cluster transistor. The instrument cluster
will turn on the high beam indicator for the following
reasons:
²High Beam Headlamps-On Message- Each
time the cluster receives a high beam headlamps-on
message from the BCM indicating the headlamp high
beams are turned On, the high beam indicator will
be illuminated. The indicator remains illuminated
until the cluster receives a high beam headlamps-off
message from the BCM.
²Actuator Test- Each time the cluster is put
through the actuator test, the high beam indicator
will be turned on, then off again during the bulbcheck portion of the test to confirm the functionality
of the LED and the cluster control circuitry.
The BCM continually monitors the exterior light-
ing (multi-function) switch to determine the proper
outputs to the headlamp low beam and high beam
relays. The BCM then sends the proper high beam
indicator lamp-on and lamp-off messages to the
instrument cluster. For further diagnosis of the high
beam indicator or the instrument cluster circuitry
that controls the indicator, (Refer to 8 - ELECTRI-
CAL/INSTRUMENT CLUSTER - DIAGNOSIS AND
TESTING). For proper diagnosis of the headlamp
system, the BCM, the PCI data bus, or the electronic
message inputs to the instrument cluster that control
the high beam indicator, a DRBIIItscan tool is
required. Refer to the appropriate diagnostic infor-
mation.
LOW FUEL INDICATOR
DESCRIPTION
A low fuel indicator is standard equipment on all
instrument clusters. The low fuel indicator is located
above the fuel gauge and to the left of the tachometer
in the instrument cluster. The low fuel indicator con-
sists of a stencil-like cutout of the International Con-
trol and Display Symbol icon for ªFuelº in the opaque
layer of the instrument cluster overlay. The dark
outer layer of the overlay prevents the indicator from
being clearly visible when it is not illuminated. An
amber Light Emitting Diode (LED) behind the cutout
in the opaque layer of the overlay causes the icon to
appear in amber through the translucent outer layer
of the overlay when it is illuminated from behind by
the LED, which is soldered onto the instrument clus-
ter electronic circuit board. The low fuel indicator is
serviced as a unit with the instrument cluster.
OPERATION
The low fuel indicator gives an indication to the
vehicle operator when the level of fuel in the fuel
tank becomes low. This indicator is controlled by a
transistor on the instrument cluster electronic circuit
board based upon cluster programming and elec-
tronic messages received by the cluster from the
Powertrain Control Module (PCM) over the Program-
mable Communications Interface (PCI) data bus. The
low fuel indicator Light Emitting Diode (LED) is
completely controlled by the instrument cluster logic
circuit, and that logic will only allow this indicator to
operate when the instrument cluster receives a bat-
tery current input on the fused ignition switch out-
put (run-start) circuit. Therefore, the LED will
always be off when the ignition switch is in any posi-
tion except On or Start. The LED only illuminates
8J - 22 INSTRUMENT CLUSTERKJ
GLASS AJAR INDICATOR (Continued)
when it is provided a path to ground by the instru-
ment cluster transistor. The instrument cluster will
turn on the low fuel indicator for the following rea-
sons:
²Bulb Test- Each time the ignition switch is
turned to the On position the low fuel indicator is
illuminated for about three seconds as a bulb test.
²Less Than 12.5 Percent Tank Full Message-
Each time the cluster receives a message from the
PCM indicating that the percent tank full is less
than 12.5 (one-eighth), the low fuel indicator is illu-
minated. The indicator remains illuminated until the
cluster receives messages from the PCM indicating
that the percent tank full has increased to greater
than 12.5 (one-eighth). The PCM applies an algo-
rithm to the input from the fuel tank sender to
dampen the illumination of the low fuel indicator
against the negative effect that fuel sloshing within
the fuel tank can have on accurate inputs to the
PCM.
²Less Than Empty Percent Tank Full Mes-
sage- Each time the cluster receives a message from
the PCM indicating the percent tank full is less than
empty, the low fuel indicator is illuminated immedi-
ately. This message would indicate that the fuel tank
sender input to the PCM is a short circuit.
²More Than Full Percent Tank Full Message
- Each time the cluster receives a message from the
PCM indicating the percent tank full is more than
full, the low fuel indicator is illuminated immedi-
ately. This message would indicate that the fuel tank
sender input to the PCM is an open circuit.
²Communication Error- If the cluster fails to
receive a percent tank full message for more than
about twelve seconds, the cluster control circuitry
will illuminate the low fuel indicator until a new per-
cent tank full message is received, or until the igni-
tion switch is turned to the Off position, whichever
occurs first.
²Actuator Test- Each time the cluster is put
through the actuator test, the low fuel indicator will
be turned on, then off again during the bulb check
portion of the test to confirm the functionality of the
LED and the cluster control circuitry.
The PCM continually monitors the fuel tank
sender input to determine the fuel level. The PCM
then applies an algorithm to the input and sends the
proper percent tank full messages to the instrument
cluster. For further diagnosis of the low fuel indicator
or the instrument cluster circuitry that controls the
LED, (Refer to 8 - ELECTRICAL/INSTRUMENT
CLUSTER - DIAGNOSIS AND TESTING). For
proper diagnosis of the fuel tank sender, the PCM,
the PCI data bus, or the electronic message inputs to
the instrument cluster that control the low fuel indi-cator, a DRBIIItscan tool is required. Refer to the
appropriate diagnostic information.
LOW OIL PRESSURE
INDICATOR
DESCRIPTION
A low oil pressure indicator is standard equipment
on all instrument clusters. The low oil pressure indi-
cator is located near the lower edge of the instrument
cluster, between the tachometer and the speedometer.
The low oil pressure indicator consists of a stencil-
like cutout of the International Control and Display
Symbol icon for ªEngine Oilº in the opaque layer of
the instrument cluster overlay. The dark outer layer
of the overlay prevents the indicator from being
clearly visible when it is not illuminated. A red Light
Emitting Diode (LED) behind the cutout in the
opaque layer of the overlay causes the icon to appear
in red through the translucent outer layer of the
overlay when it is illuminated from behind by the
LED, which is soldered onto the instrument cluster
electronic circuit board. The low oil pressure indica-
tor is serviced as a unit with the instrument cluster.
OPERATION
The low oil pressure indicator gives an indication
to the vehicle operator when the engine oil pressure
is low. This indicator is controlled by a transistor on
the instrument cluster electronic circuit board based
upon cluster programming and electronic messages
received by the cluster from the Powertrain Control
Module (PCM) over the Programmable Communica-
tions Interface (PCI) data bus. The low oil pressure
indicator Light Emitting Diode (LED) is completely
controlled by the instrument cluster logic circuit, and
that logic will only allow this indicator to operate
when the instrument cluster receives a battery cur-
rent input on the fused ignition switch output (run-
start) circuit. Therefore, the LED will always be off
when the ignition switch is in any position except On
or Start. The LED only illuminates when it is pro-
vided a path to ground by the instrument cluster
transistor. The instrument cluster will turn on the
low oil pressure indicator for the following reasons:
²Bulb Test- Each time the ignition switch is
turned to the On position the low oil pressure indica-
tor is illuminated as a bulb test. The indicator will
remain illuminated until the engine is started
(engine speed is greater than 450 rpm), or until the
ignition switch is turned to the Off position, which-
ever occurs first.
²Engine Oil Pressure Low Message- Once the
engine has been started (engine speed has been
greater than 450 rpm), each time the cluster receives
KJINSTRUMENT CLUSTER 8J - 23
LOW FUEL INDICATOR (Continued)