6E±143
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0107 MAP Sensor Circuit Low Voltage
060R200051
Circuit Description
The manifold absolute pressure (MAP) sensor responds
to changes in intake manifold pressure (vacuum). The
MAP sensor signal voltage to the powertrain control
module (PCM) varies from below 2 volts at idle (high
vacuum) to above 4 volts with the ignition ªONº, engine
not running or at wide-open throttle (low vacuum).
The MAP sensor is used to determine manifold pressure
changes while the exhaust gas recirculation (EGR) flow
test diagnostic is being run (refer to
DTC P0401), to
determine engine vacuum level for some other
diagnostics and to determine barometric pressure
(BARO). The PCM monitors the MAP signals for voltages
outside the normal range of the MAP sensor. If the PCM
detects a MAP signal voltage that is excessively low, DTC
P0107 will be set.
Conditions for Setting the DTC
No TP sensor DTCs present.
Engine is running.
Throttle angle is above 1% if engine speed is less than
1000 RPM.
Throttle angle is above 2% if engine speed is above
1000 RPM.
The MAP sensor indicates manifold absolute pressure
at or below 11 kPa for a total of approximately 10
seconds over a 16-second period.
Ignition voltage more than 11 volts.
Action Taken When the DTC Sets
The PCM will ON the MIL after second trip with
detected fault.
The PCM will default to a BARO value of 79.3 kPa.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
A history DTC P0107 will clear after 40 consecutive
warm-up cycles have occurred without a fault.
DTC P0107 can be cleared by using the Tech 2 ªClear
Infoº function or by disconnecting the PCM battery
feed.
Diagnostic Aids
Check for the following conditions:
Check for intermittent codes.
The MAP sensor shares a 5 Volt reference with the
Fuel Tank Pressure Sensor. If these codes are also
set, it could indicate a problem with the 5 Volt reference
circuit .
The MAP sensor shares a ground with the Fuel Tank
Pressure Sensor, the ECT sensor, and the
Transmission Fluid Temperature sensor.
Poor connection at PCM ± Inspect harness connectors
for backed-out terminals, improper mating, broken
6E±146
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0108 MAP Sensor Circuit High Voltage
060R200051
Circuit Description
The manifold absolute pressure (MAP) sensor responds
to changes in intake manifold pressure (vacuum). The
MAP sensor signal voltage to the powertrain control
module (PCM) varies from below 2 volts at idle (high
vacuum) to above 4 volts with the key ªONº, engine not
running or at wide-open throttle (low vacuum).
The MAP sensor is used to determine manifold pressure
changes while the linear EGR flow test diagnostic is being
run (refer to
DTC P0401), to determine engine vacuum
level for some other diagnostics and to determine
barometric pressure (BARO). The PCM monitors the
MAP signals for voltages outside the normal range of the
MAP sensor. If the PCM detects a MAP signal voltage
that is excessively high, DTC P0108 will be set.
Conditions for Setting the DTC
No TP sensor DTCs present.
Engine is running for more than 10 seconds.
Throttle position is below 3% if engine speed is below
1000 RPM.
Throttle position is below 10% if engine speed is above
1000 RPM.
The MAP sensor indicates an intermittent manifold
absolute pressure above 80 kPa for a total of
approximately 10 seconds over a 16-second period.
Action Taken When the DTC Sets
The PCM will ON the MIL after second trip with
detected fault.
The PCM will default to a BARO value of 79.3 kPa.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
A history DTC P0108 will clear after 40 consecutive
warm-up cycles have occurred without a fault.
DTC P0108 can be cleared by using the Tech 2 ªClear
Infoº function or by disconnecting the PCM battery
feed.
Diagnostic Aids
Check for the following conditions:
The MAP sensor shares a 5 Volt reference with the
Fuel Tank Pressure Sensor (Vapor Pressure Sensor).
If these codes are also set, it could indicate a problem
with the 5 Volt reference circuit.
The MAP sensor shares a ground with the Fuel Tank
Pressure Sensor, the ECT sensor, and the
Transmission Fluid Temperature sensor.
Poor connection at PCM ± Inspect harness connectors
for backed-out terminals, improper mating, broken
6E±158
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0118 ECT Sensor Circuit High Voltage
060R200053
Circuit Description
The engine coolant temperature (ECT) sensor is a
thermistor mounted in on a coolant crossover pipe at the
front of the engine. The powertrain control module (PCM)
applies a voltage (about 5 volts) through a pull-up resistor
to the ECT signal circuit. When the engine coolant is cold,
the sensor (thermistor) resistance is high, therefore the
PCM will measure a high signal voltage. As the engine
coolant warms, the sensor resistance becomes less, and
the ECT signal voltage measured at the PCM drops. With
a fully warmed-up engine, the ECT signal voltage should
measure about 1.5 to 2.0 volts.
Conditions for Setting the DTC
Engine running time is longer than 90 seconds.
The ECT sensor signal indicates an engine coolant
temperature of ±39C (±38F) or less (about 5 volts)
for a total of 50 seconds over a 100-second period.
Action Taken When the DTC Sets
The PCM will ON the MIL after second trip with
detected fault.
The PCM will substitute the ECT reading with a default
engine coolant temperature value. The default value
is based on start-up intake air temperature and running
time.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
A history DTC P0118 will clear after 40 consecutive
warm-up cycles have occurred without a fault.
DTC P0118 can be cleared by using the Tech 2 ªClear
Infoº function or by disconnecting the PCM battery
feed.
Diagnostic Aids
Check for the following conditions:
The ECT shares a ground with the Transmission Fluid
Temperature sensor, the Fuel Tank Pressure sensor, and
the MAP sensor.
Check the ground if these DTCs are also set.
Poor connection at PCM ± Inspect harness connectors
for backed-out terminals, improper mating, broken
locks, improperly formed or damaged terminals, and
poor terminal-to-wire connection.
Damaged harness ± Inspect the wiring harness for
damage. If the harness appears to be OK, observe the
ECT display on the Tech 2 while moving connectors
and wiring harnesses related to the ECT sensor. A
change in the ECT display will indicate the location of
the fault.
If DTC P0118 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.
If it is determined that the DTC occurs intermittently,
6E±222
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0171 Fuel Trim System Lean Bank 1
060R200054
Circuit Description
To provide the best possible combination of driveability,
fuel economy, and emission control, a ªclosed loopº
air/fuel metering system is used. While in ªclosed loopº,
the powertrain control module (PCM) monitors the Bank 1
HO2S 1 and Bank 2 HO2S 1 signals and adjusts fuel
delivery based upon the HO2S signal voltages. A change
made to fuel delivery will be indicated by the long and
short term fuel trim values which can be monitored with a
Tech 2. Ideal fuel trim values are around 0%; if the HO2S
signals are indicating a lean condition the PCM will add
fuel, resulting in fuel trim values above 0%. If a rich
condition is detected, the fuel trim values will be below
0%, indicating that the PCM is reducing the amount of fuel
delivered. If an excessively lean condition is detected on
Bank 1, the PCM will set DTC P0171.
The PCM's maximum authority to control long term fuel
trim allows a range between ±15% (automatic
transmission) or ±12% (manual transmission) and +20%.
The PCM monitors fuel trim under various engine
speed/load fuel trim cells before determining the status of
the fuel trim diagnostic.
Conditions for Setting the DTC
None of the following: EGR DTCs, HO2S DTCs,
(response, transition, open, low volts, no activity), MAF
DTCs, TP sensor DTCs, MAP DTCs, IAT DTCs,
canister purge DTCs, EVAP DTCs, injector circuit
DTCs, or misfire DTCs. Engine coolant temperature is between 6C (42.8F)
and 105C (221F).
Intake air temperature is between ±40C (±40F) and
120C (248F).
Manifold absolute pressure is between 24 kPa and 99
kPa.
Throttle angle is steady below 95%.
Vehicle speed is below 136 km/h (85 mph).
Engine speed is between 400 and 6,000 RPM.
Barometric pressure is greater than 72.5 kPa.
Mass air flow is between 2 g/second and 200 g/second.
Ignition voltage is above 9.5 volts.
Fuel system is in ªclosed loopº.
Canister purge duty cycle is greater than 0% if on.
Action Taken When the DTC Sets
The PCM will illuminate the malfunction indicator lamp
(MIL) after the second consecutive trip in which the
fault is detected.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
A history DTC P0171 will clear after 40 consecutive
warm-up cycles have occurred without a fault.
6E±226
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0172 Fuel Trim System Rich Bank 1
060R200054
Circuit Description
To provide the best possible combination of driveability,
fuel economy, and emission control, a ªclosed loopº
air/fuel metering system is used. While in ªclosed loopº,
the powertrain control module (PCM) monitors the Bank 1
heated oxygen sensors (HO2S) 1 and Bank 2 HO2S 1
signals and adjusts fuel delivery based upon the HO2S
signal voltages. A change made to fuel delivery will be
indicated by the long and short term fuel trim values which
can be monitored with a Tech 2. Ideal fuel trim values are
around 0%; if the HO2S signals are indicating a lean
condition the PCM will add fuel, resulting in fuel trim
values above 0%. If a rich condition is detected, the fuel
trim values will be below 0%, indicating that the PCM is
reducing the amount of fuel delivered. If an excessively
rich condition is detected on Bank 1, the PCM will set DTC
P0172.
The PCM's maximum authority to control long term fuel
trim allows a range between ±15% (automatic
transmission) or ±12 (manual transmission) and +20%.
The PCM's maximum authority to control short term fuel
trim allows a range between ±11% and +20%. The PCM
monitors fuel trim under various engine speed/load fuel
trim cells before determining the status of the fuel trim
diagnostic.
Conditions for Setting the DTC
None of the following was set: EGR DTCs, HO2S
DTCs, (response, transition, open, low volts, no
activity), MAF DTCs, TPS DTCs, MAP DTCs, IATDTCs, canister purge DTCs, EVAP DTCs, injector
circuit DTCs, or misfire DTCs.
Engine coolant temperature is between 6C (42.8F)
and 105C (221F).
Intake air temperature is between ±40C (±40F) and
120C (248F).
Manifold absolute pressure is between 24 kPa and 99
kPa.
Throttle angle is steady below 95%.
Vehicle speed is below 136 km/h (85 mph).
Engine speed is between 400 and 6,000 RPM.
Barometric pressure is greater than 72.5 kPa.
Mass air flow is between 2 g/second and 200 g/second.
Ignition voltage is above 9.5 volts.
Fuel system is in ªclosed loopº.
Canister purge duty cycle is greater than 0%, if ªONº.
Action Taken When the DTC Sets
The PCM will illuminate the malfunction indicator lamp
(MIL) after the second consecutive trip in which the
fault is detected.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
6E±230
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0174 Fuel Trim System Lean Bank 2
060R200054
Circuit Description
To provide the best possible combination of driveability,
fuel economy, and emission control, a ªclosed loopº
air/fuel metering system is used. While in ªclosed loopº,
the powertrain control module (PCM) monitors the Bank 1
HO2S 1 and Bank 2 HO2S 1 signals and adjusts fuel
delivery based upon the HO2S signal voltages. A change
made to fuel delivery will be indicated by the long and
short term fuel trim values which can be monitored with a
Tech 2. Ideal fuel trim values are around 0%; if the HO2S
signals are indicating a lean condition the PCM will add
fuel, resulting in fuel trim values above 0%. If a rich
condition is detected, the fuel trim values will be below
0%, indicating that the PCM is reducing the amount of fuel
delivered. If an excessively lean condition is detected on
Bank 2, the PCM will set DTC P0174.
The PCM's maximum authority to control long term fuel
trim allows a range between ±15%(automatic
transmission) or ±12%(manual transmission) and +20%.
The PCM monitors fuel trim under various engine
speed/load fuel trim cells before determining the status of
the fuel trim diagnostic.
Conditions for Setting the DTC
None of the following DTCs are set: idle system, EGR,
HO2S, (response, transition, open, low volts, no
activity), MAF, TP sensor, MAP, IAT, canister purge,
EVAP, injector circuit, or misfire.
Engine coolant temperature is between 6C (42.8F)
and 105C (221F).Intake air temperature is between ±40C (±40F) and
120C (248F).
Manifold absolute pressure is between 24 kPa and 99
kPa.
Throttle angle is steady between 3 and 95%.
Vehicle speed is below 136 km/h (85 mph).
Engine speed is between 400 and 6,000 RPM.
Barometric pressure is greater than 72.5 kPa.
Mass air flow is between 2 g/second and 200 g/second.
Ignition voltage is above 9.5 volts.
Fuel system is in ªclosed loopº.
Canister purge duty cycle is greater than 0%, if ªONº.
Action Taken When the DTC Sets
The PCM will illuminate the malfunction indicator lamp
(MIL) after the second consecutive trip in which the
failure is detected.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
A history DTC P0174 will clear after 40 consecutive
warm-up cycles have occurred without a fault.
DTC P0174 can be cleared by using the Tech 2 ªClear
Infoº function or by disconnecting the PCM battery
feed.
6E±234
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0175 Fuel Trim System Rich Bank 2
060R200054
Circuit Description
To provide the best possible combination of driveability,
fuel economy, and emission control, a ªclosed loopº
air/fuel metering system is used. While in ªclosed loopº,
the powertrain control module (PCM) monitors the Bank 1
HO2S 1 and Bank 2 HO2S 1 signals and adjusts fuel
delivery based upon the HO2S signal voltages. A change
made to fuel delivery will be indicated by the long and
short term fuel trim values which can be monitored with a
Tech 2. Ideal fuel trim values are around 0%; if the HO2S
signals are indicating a lean condition the PCM will add
fuel, resulting in fuel trim values above 0%. If a rich
condition is detected, the fuel trim values will be below
0%, indicating that the PCM is reducing the amount of fuel
delivered. If an excessively rich condition is detected on
Bank 2, the PCM will set DTC P0175.
The PCM's maximum authority to control long term fuel
trim allows a range between ±15%(automatic
transmission) or ±12%(manual transmission) and +20%.
The PCM's maximum authority to control short term fuel
trim allows a range between ±11% and +20%. The PCM
monitors fuel trim under various engine speed/load fuel
trim cells before determining the status of the fuel trim
diagnostic.
Conditions for Setting the DTC
None of the following DTCs are set: idle system, EGR,
HO2S, (response, transition, open, low volts, noactivity), MAF, TPS, MAP, IAT, canister purge, EVAP,
injector circuit, or misfire.
Engine coolant temperature is between 6C (42.8F)
and 105C (221F).
Intake air temperature is between ±40C (±40F) and
120C (248F).
Manifold absolute pressure is between 24 kPa and 99
kPa.
Throttle angle is steady between 3 and 95%.
Vehicle speed is below 136 km/h (85 mph).
Engine speed is between 400 and 6,000 RPM.
Barometric pressure is greater than 72.5 kPa.
Mass air flow is between 2 g/second and 200 g/second.
Ignition voltage is above 9.5 volts.
Fuel system is in ªclosed loopº.
Action Taken When the DTC Sets
The PCM will illuminate the malfunction indicator lamp
(MIL) after the second consecutive trip in which the
failure is detected.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
6E±259
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
DTC P0300 ± Engine Misfire Detected
StepNo Ye s Value(s) Action
171. Perform the ªInjector Coil/Balance Testº.
2. If a problem is found, replace faulty injector(s) as
necessary.
Did any of the injectors require replacement?
ÐVerify repairGo to Step 18
181. Check for an engine mechanical problem. Refer to
Engine Mechanical Diagnosis to diagnose the
following conditions:
A faulty or incorrect camshaft
Leaking or sticky valves or rings
Excessive valve deposits
Weak valve springs
Incorrect valve timing
A leaking head gasket
A loose or broken motor mount
2. If a problem is found, repair as necessary.
Was a basic engine mechanical problem found and
repaired?
ÐVerify repairGo to Step 19
191. Check for a transmission TCC problem. Refer to
4L30-E Automatic Transmission Diagnosis.
2. If a problem is found, repair the transmission as
necessary. Refer to
4L30-E Automatic
Transmission Unit Repair
.
Was a transmission problem found and repaired?
ÐVerify repair Go to Step 20
20Replace the MAF sensor.
Is the action complete?
ÐVerify repairÐ