Page 199 of 557
MAP
sensor
To other sensorsTo TP sensor
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-43
DTC P0105 MANIFOLD ABSOLUTE PRESSURE (MAP) CIRCUIT
MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
MAP: 4.9 kpa, 37 mmHg or less
(Low pressure – High vacuums – Low voltage)
MAP: 114.7 kpa, 860 mmHg or more
(High pressure – Low vacuums – High voltage)“G” circuit open
“P” circuit open or shorted to ground
“G” circuit open or shorted to ground
MAP sensor malfunction
ECM (PCM) malfunction
NOTE:
When DTC P0120 is indicated together, it is possible that “P” circuit is open.
DTC CONFIRMATION PROCEDURE
1) Clear DTC, start engine and keep it at idle for 1 min.
2) Select “DTC” mode on scan tool and check DTC.
Page 200 of 557

6-1-44 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
MAP Sensor Individual Check
1) Disconnect coupler from MAP sensor (1).
2) Remove MAP sensor (1).
3) Arrange 3 new 1.5 V batteries (2) in series (check that total volt-
age is 4.5 – 5.0 V) and connect its positive terminal to “Vin” termi-
nal of sensor and negative terminal to “Ground” terminal. Then
check voltage between “Vout” and “Ground”.
Also, check if voltage reduces when vacuum is applied up to 400
mmHg by using vacuum pump (3).
Output voltage (Vin voltage 4.5 – 5.5 V, ambient temp. 20 –
30C, 68 – 86F)
ALTITUDE
BAROMETRICOUTPUT
(Reference)PRESSUREVOLTAGE
(ft)(m)(mmHg)(kPa)(V)
0
0
760
100
3343
2 000
610
707
94
3.3 – 4.3
2 001
611
Under 70794
3041
5 000
1 524over 634
85
3.0 – 4.1
5 001
1 525
Under 63485
2737
8 000
2 438over 567
76
2.7 – 3.7
8 001
2 439
Under 56776
25–33
10 000
3 048over 526
70
2.5 – 3.3
If check result is not satisfactory, replace MAP sensor (1).
4) Install MAP sensor (1) securely.
5) Connect MAP sensor (1) coupler securely.
Page 201 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-45
Fig. 1 for Step 2 Fig. 2 for Step 3
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE”
performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check MAP Sensor and Its Circuit.
1) Connect scan tool to DLC with ignition
switch OFF.
2) Turn ignition switch ON.
3) Check intake manifold pressure.
See Fig. 1.
Is it 114.7 kPa or more or 4.9 kPa or less?Go to Step 3.Intermittent trouble.
Check for intermittent
referring to
“INTERMITTENT AND
POOR CONNECTION” in
Section 0A.
3Check Wire Harness.
1) Disconnect MAP sensor connector with
ignition switch OFF.
2) Check for proper connection of MAP
sensor at “Gr” and “G” wire terminals.
3) If OK, then with ignition switch ON, check
voltage at each of “P” and “Gr” wire
terminals. See Fig. 2.
Is voltage about 4 – 6 V at each terminal?Go to Step 4.“P” wire open or shorted to
ground circuit or shorted to
power circuit, “Gr” wire
open or shorted to ground,
poor C03-5 connection or
C01-22 connection.
If wire and connection are
OK, confirm that MAP
sensor is normal and then
substitute a known-good
ECM (PCM) and recheck.
NOTE: When battery
voltage is applied to
“P” wire, it is possible
that MAP sensor is also
faulty.
4Check MAP sensor according to “MAP
Sensor Individual Check” below.
Is it in good condition?“P” wire shorted to “Gr”
wire, “G” wire open,
poor C01-10 connection.
If wire and connection are
OK, substitute a known-
good ECM (PCM) and
recheck.Replace MAP sensor.
Page 206 of 557
Throttle
position
sensorTo MAP sensor
To other sensors
6-1-50 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
DTC P0120 THROTTLE POSITION CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
Signal voltage high
Signal voltage low“G” circuit open
“Gr” circuit open or shorted to ground
“P” circuit open or shorted to power or ground
TP sensor malfunction
ECM (PCM) malfunction
NOTE:
When DTC P0105, P0110, P0115 and / or P0120 are / is indicated together, it is possible that “G” circuit is
open.
When DTC P0105 and / or P0120 are / is indicated together, it is possible that “P” circuit is open.
DTC CONFIRMATION PROCEDURE
1) Clear DTC, start engine and keep it at idle for 1 min.
2) Select “DTC” mode on scan tool and check DTC.
Page 221 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-65
Ignition
switch
Main
fuseMain relay
To ignition
switchTo other sensor Relay boxNo.1 injector
No.2 injector
No.3 injector
No.4 injector Fuse box
Signal to decrease amount of fuel injection
Signal to increase amount of fuel injection
High voltage
Low voltage
A / F mixture
becomes
richerOxygen
concentration
decreases
A / F mixture Oxygen
Fuel injectorSensed
information
A / F mixture
Exhaust gas
becomes
leanerconcentration
increases
DTC P0171 FUEL SYSTEM TOO LEAN
DTC P0172 FUEL SYSTEM TOO RICH
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
When following condition occurs while engine running under
closed loop condition.
–Air / fuel ratio too lean
Total fuel trim (short and long terms added) is
more than 30%
or
–Air / fuel ratio too rich
(Total fuel trim is less than –30%)
2 driving cycle detection logic, continuous monitoring.Vacuum leaks (air drawn in).
Exhaust gas leakage.
Heated oxygen sensor-1 circuit
malfunction.
Fuel pressure out of specification.
Fuel injector malfunction (clogged or
leakage).
MAP sensor poor performance.
ECT sensor poor performance.
IAT sensor poor performance.
TP sensor poor performance.
EVAP control system malfunction.
PCV valve malfunction.
Page 236 of 557

6-1-80 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
1. EGR valve coupler
INSPECTION
STEPACTIONYESNO
1Was ENGINE DIAG. FLOW TABLE performed?Go to Step 2.Go to ENGINE
DIAG. FLOW
TABLE.
2Do you have SUZUKI scan tool?Go to Step 3.Go to Step 5.
3EGR Valve Operation Check
1) With ignition switch OFF, install SUZUKI scan tool.
2) Check EGR system referring to section 6E2.
Is it in good condition?Go to Step 4.Go to Step 5.
4MAP Sensor Check
1) Check MAP sensor for performance referring to “MAP
Sensor Check” in DTC P0105 Diag. Flow Table.
Is check result satisfactory?Intermittent trouble
or faulty ECM
(PCM) Check for in-
termittent referring
to “Intermittent and
Poor Connection” in
section 0A.Repair or replace.
5EGR Valve Power Supply Circuit Check
1) With ignition switch OFF, disconnect EGR valve
coupler.
2) With ignition switch ON, check voltage between C13-2
and ground, C13-5 and ground. See Fig. 1.
Is each voltage 10 – 14 V?Go to Step 6.“R/B” wire.
6EGR Valve Stepping Motor Coil Circuit Check
1) With ignition switch OFF, connect EGR valve coupler
and disconnect ECM (PCM) couplers.
2) Check resistance between C02-6 and C02-2, C02-8,
C02-9, C02-17.
Is each resistance 20 – 24 Ω at 20C, 68F?Go to Step 7.Faulty “R/Y”,
“R/Bl”, “R”, “R/W”
wire or EGR valve.
7MAP Sensor Check
1) Check MAP sensor for performance referring to
“MAP Sensor Check” in DTC P0105 Diag. Flow Table.
Is check result satisfactory?EGR passage
clogged or EGR
valve malfunction.
If all above are OK,
intermittent trouble
or faulty ECM.
Check for intermit-
tent referring to
“Intermittent and
Poor Connection” in
section 0A.Repair or replace.
Fig. 1 for step 5
Page 251 of 557
Applying Vacuum Displayed Value on Scan Tool
0Barometric pressure
(Approx. 100 kPa, 760 mmHg)
27 kPa
200 mmHgBarometric pressure –27 kPa
(Approx. 73 kPa, 560 mmHg
67 kPa
500 mmHgBarometric pressure –67 kPa
(Approx. 33 kPa, 260 mmHg)
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-95
Fig. 2 for Step 2
STEPACTIONYESNO
2Check MAP Sensor
1) Remove MAP sensor from intake manifold and connect
vacuum pump gauge to MAP sensor. See Fig. 2.
2) Connect scan tool to DLC and turn ignition switch ON.
3) Check intake manifold absolute pressure displayed on
scan tool under following conditions.
Is check result satisfactory?Check air intake
system for air
being drawn in
and engine
compression.
If OK, then
substitute a
known-good ECM
(PCM) and
recheck.Replace MAP
sensor.
Page 309 of 557
1. Intake manifold
2. Throttle body
3. Gasket
4. EGR valve
5. Fuel delivery pipe
6. Fuel injector7. Fuel pressure regulator
8. EVAP canister purge valve
9. MAP sensor
10. O-ring
11. Gasket
12. Cushion : Tightening Torque
: Do not reuse
1
2
6A1-14 ENGINE MECHANICAL (G13B, 1-CAM 16-VALVES ENGINE)
THROTTLE BODY AND INTAKE MANIFOLD
REMOVAL
1) Relieve fuel pressure according to procedure described in Sec-
tion 6.
2) Disconnect negative cable at battery.
3) Drain cooling system.
WARNING:
To help avoid danger of being burned, do not remove
drain plug (2) and radiator cap while engine and radiator
(1) are still hot. Scalding fluid and steam can be blown out
under pressure if plug and cap are taken off too soon.
4) Disconnect IAT sensor at coupler.
5) Remove air cleaner outlet hose (2) with resonator.
6) Disconnect accelerator cable (1) from throttle body.