Ignition coil
Igniter
Ignition switch
Main
fuse
Injector resistor
Fuel injector
Crankshaft
position sensor
Camshaft
position sensor
Ground
at engine “I / G COIL METER”
Main relay
6-68 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0300 RANDOM MISFIRE DETECTED (Misfire detected at 2 or more
cylinders)
DTC P0301 CYLINDER 1 MISFIRE DETECTED
DTC P0302 CYLINDER 2 MISFIRE DETECTED
DTC P0303 CYLINDER 3 MISFIRE DETECTED
CIRCUIT DESCRIPTION
ECM (PCM) monitors crankshaft revolution speed and engine speed via the crankshaft position sensor and cylin-
der No. via the camshaft position sensor. Then it calculates the change in the crankshaft revolution speed and from
how many times such change occurred in every 200 or 1000 engine revolutions, it detects occurrence of misfire.
When ECM (PCM) detects a misfire (misfire rate per 200 revolutions) which can cause overheat and damage to
the three way catalytic converter, it makes the malfunction indicator lamp (MIL) flash as long as misfire occurs at
that rate.
After that, however, when the misfire rate drops, MIL remains ON until it has been judged as normal 3 times under
the same driving conditions.
Also, when ECM (PCM) detects a misfire (misfire rate per 1000 revolutions) which will not cause damage to three
way catalytic converter but can cause exhaust emission to be deteriorated, it makes MIL light according to the 2
driving cycle detection logic.
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-69
Below
specified value DTC DETECTING CONDITION
POSSIBLE CAUSE
Engine under other than high revolution condition
Not on rough road
Engine speed changing rate
Manifold absolute
pressure changing rate
Throttle opening changing rate
Misfire rate per 200 or 1000 engine revolutions (how
much and how often crankshaft revolution speed
changes) is higher than specified valueEngine overheating
Vacuum leaks (air inhaling) from air intake system
Ignition system malfunction (spark plug(s), high-
tension cord(s), ignition coil assembly)
Fuel pressure out of specification
Fuel injector malfunction (clogged or leakage)
Engine compression out of specification
Valve lash (clearance) out of specification
Manifold absolute pressure sensor malfunction
Engine coolant temp. sensor malfunction
PCV valve malfunction
EVAP control system malfunction
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester.
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Ambient temp.: –10C, 14F or higher
–Intake air temp.: 70C, 158F or lower
–Engine coolant temp.: –10 – 11 0C, 14 – 230F
4) Start engine and keep it at idle for 2 min. or more.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
6) If DTC is not detected at idle, consult usual driving based on information obtained in “Customer complaint analy-
sis” and “Freeze frame data check”.
Oscilloscope Waveforms
Crankshaft
timing belt pulleyCKP
sensor
2V/Div.
5ms/Div.
Waveforms at specified idle speed
6-72 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0335 CRANKSHAFT POSITION (CKP) SENSOR CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
No CKP sensor signal during 1 revolution of
camshaft.CKP sensor circuit open or short.
Crankshaft timing belt pulley teeth damaged.
CKP sensor malfunction, foreign material being
attached or improper installation.
ECM (PCM) malfunction.
Reference
Connect oscilloscope between terminals C01-3 (+) and C01-11 (–) of ECM (PCM) connector connected to ECM
(PCM) and check CKP sensor signal.
DTC CONFIRMATION PROCEDURE
1) Clear DTC, start engine and keep it at idle for 1 min.
2) Select “DTC” mode on scan tool and check DTC.
Display of fuel injection signal using oscilloscope
1. CMP sensor signal
2. Fuel injector signal
3. Fuel injection time
2V/Div.
20V/Div.1
2
10ms/Div
Waveforms at specified idle speed 3 Sensor rotor
in distributorCamshaft
position sensor
6-74 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0340 CAMSHAFT POSITION (CMP) SENSOR CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
No CMP sensor signal for 2 seconds at engine
cranking (CKP sensor signal is inputted).CMP sensor circuit open or short.
Signal rotor teeth damaged.
CMP sensor malfunction, foreign material being
attached or improper installation.
ECM (PCM) malfunction.
Reference
Connect oscilloscope between terminals C01-2 and C01-10 of ECM (PCM) connector connected to ECM (PCM)
and check CMP sensor signal.
DTC CONFIRMATION PROCEDURE
1) Clear DTC.
2) Start engine and keep it at idle for 1 min.
3) Select “DTC” mode on scan tool and check DTC.
6-84 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Vehicle speed sensor (on A / T)
Counter
shaft
gearPCMC03-2
C03-13
Bl
P
C03-2
C03-13
DTC P0500 VEHICLE SPEED SENSOR (VSS) MALFUNCTION FOR A / T
VEHICLE (A / T)
CIRCUIT DESCRIPTION – Refer to Section 6E1 for VSS operation.
DTC DETECTING CONDITIONPOSSIBLE CAUSE
While fuel is kept cut at lower than 4000 r / min for
longer than 4 sec.
VSS signal not inputted.
2 driving cycle detection logic, continuous
monitoring.“BI” or “P” circuit open or short.
Vehicle speed sensor malfunction.
Foreign material being attached or sensor installed
improperly.
Gear damaged.
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester, on a level road.
1) Turn ignition switch OFF and then ON.
2) Clear DTC and warm up engine to normal operating temperature.
3) Increase vehicle speed to 50 mph, 80 km / h in “2” range.
4) Release accelerator pedal and with engine brake applied, keep vehicle coasting (fuel cut condition) for 4 sec.
or more.
5) Stop vehicle and check DTC and pending DTC.
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-85
Fig. 1 for Step 2 Fig. 2 for Step 3
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE
DIAG. FLOW
TABLE”.
2Check VSS for Resistance.
1) Disconnect VSS connection with ignition switch OFF.
2) Check for proper connection to VSS at “Bl” and “P” wire
terminals.
3) If OK, then check resistance of VSS. See Fig. 1.
Resistance between terminals : 100 – 300 Ω
Resistance between terminal
and transmission : 1 MΩ or more
Are check result satisfactory?Go to Step 3.Replace VSS.
3Check Visually VSS and Counter Shaft Gear for the
Following. See Fig. 2.
No damage
No foreign material attached
Correct installation
Are they in good condition?“BI” or “P” wire
open or shorted to
ground or poor
C03-2 or C03-13
connection. If
wires and
connections are
OK, intermittent
trouble or faulty
PCM. Check for
intermittent
referring to
“Intermittent and
Poor Connection”
in Section 0A.Clean, repair or
replace.
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-3
GENERAL INFORMATION
STATEMENT ON CLEANLINESS AND CARE
An automobile engine is a combination of many machined, honed,
polished and lapped surfaces with tolerances that are measured in
the thousands of an millimeter (ten thousands of an inch).
Accordingly, when any internal engine parts are serviced, care and
cleanliness are important.
Throughout this section, it should be understood that proper clean-
ing and protection of machined surfaces and friction areas is part
of the repair procedure. This is considered standard shop practice
even if not specifically stated.
A liberal coating of engine oil should be applied to friction areas
during assembly to protect and lubricate the surfaces on initial op-
eration.
Whenever valve train components, pistons, piston rings, con-
necting rods, rod bearings, and crankshaft journal bearings are
removed for service, they should be retained in order.
At the time of installation, they should be installed in the same
locations and with the same mating surfaces as when removed.
Battery cables should be disconnected before any major work is
performed on the engine.
Failure to disconnect cables may result in damage to wire har-
ness or other electrical parts.
Throughout this manual, the four cylinders of the engine are iden-
tified by numbers; No.1 (1), No.2 (2), No.3 (3) and No.4 (4)
counted from crankshaft pulley side to flywheel side.
GENERAL INFORMATION ON ENGINE SERVICE
THE FOLLOWING INFORMATION ON ENGINE SERVICE
SHOULD BE NOTED CAREFULLY, AS IT IS IMPORTANT IN PRE-
VENTING DAMAGE, AND IN CONTRIBUTING TO RELIABLE EN-
GINE PERFORMANCE.
When raising or supporting engine for any reason, do not use a
jack under oil pan. Due to small clearance between oil pan and
oil pump strainer, jacking against oil pan may cause it to be bent
against strainer resulting in damaged oil pick-up unit.
It should be kept in mind, while working on engine, that 12-volt
electrical system is capable of violent and damaging short cir-
cuits.
When performing any work where electrical terminals can be
grounded, ground cable of the battery should be disconnected at
battery.
Any time the air cleaner, throttle body or intake manifold is re-
moved, the intake opening should be covered. This will protect
against accidental entrance of foreign material which could follow
intake passage into cylinder and cause extensive damage when
engine is started.
6-1-16 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
DTC
NO.DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0335Crankshaft position sensor
circuit malfunctionNo signal for 2 sec. During engine cranking1 driving
cycle
P0340Camshaft position sensor circuit
malfunctionNo signal during engine running1 driving
cycle
P0400Exhaust gas recirculation
flow malfunction detectedExcessive or insufficient EGR flow2 driving
cycles
P0420Catalyst system efficiency below
threshold
Output waveforms of HO2S-1 and HO2S-2 are
similar.
(Time from output voltage change of HO2S-1 to that
of HO2S-2 is shorter than specification.)
2 driving
cycles
P0443Purge control valve circuit
malfunctionPurge control valve circuit is open or shorted to
ground2 driving
cycles
P0480Radiator fan control circuit
malfunctionRadiator cooling fan relay terminal voltage is low
when cooling temp. is lower than specification2 driving
cycles
P0500Vehicle speed sensor
malfunctionNo signal while running in “D” range or during fuel cut
at decelerating2 driving
cycles
P0505Idle control system malfunctionNo closed signal to IAC valve is detected2 driving
cycles
P0601Internal control module memory
check sum errorData write error (or check sum error) when written
into ECM (PCM)1 driving
cycle
P1450Barometric pressure sensor
circuit malfunctionBarometric pressure is lower or higher than
specification. (or sensor malfunction)1 driving
cycle
P1451Barometric pressure sensor
performance problem
Difference between manifold absolute pressure
(MAP sensor value) and barometric pressure
(barometric pressure sensor value) is larger than
specification during cranking.
2 driving
cycles
P1500Starter signal circuit malfunctionStarter signal is not inputted from engine cranking till
its start and after or it is always inputted2 driving
cycles
P1510ECM (PCM) backup power
source malfunctionNo backup power after starting engine1 driving
cycle