
12ENGINE
38
OVERHAUL Crankshaft spigot bush
1.Check crankshaft spigot bush for wear, replace if
necessary using the following procedures:
2.Secure crankshaft in a suitably padded vice.
3.Tap a thread in spigot bush to accommodate a
suitable impulse extractor.
4.Fit impulse extractor to spigot bush.
5.Remove spigot bush.
6.Clean spigot bush recess in crankshaft.
7.Fit new spigot bush to crankshaft using a
suitable mandrel.
Crankshaft - Refit
1.Fit oil squirt jets, fit Torx screws and tighten to8
Nm (6 lbf.ft).
2.Lubricate new, grooved, main bearing shells with
engine oil and fit to cylinder block.
3.Lubricate new thrust washers with engine oil and
fit, grooved side facing outwards, to recess in
each side of cylinder block No. 3 main bearing.
4.Lubricate crankshaft journals with engine oil and
using assistance, position crankshaft in cylinder
block.
5.Lubricate new, plain, main bearing shells with
engine oil and fit to main bearing caps.
6.Fit main bearing caps in their original fitted
positions ensuring that reference marks are
aligned.
7.Fit and lightly tighten new main bearing cap
bolts.
CAUTION: Do not lubricate bolt threads.
8.Starting with No. 3 main bearing cap and
working outwards, tighten main bearing cap bolts
to:
Stage 1 -33 Nm (24 lbf.ft)
Stage 2 -Further 90
°
CAUTION: Do not carry out stages 1 and 2
in one operation.
9.Check that crankshaft rotates smoothly.
10.Assemble a magnetic base DTI to front of
cylinder block with stylus of gauge on end of
crankshaft.
11.Using suitably padded levers, move crankshaft
rearwards and zero DTI.
12.Move crankshaft forwards and note crankshaft
end-float reading on gauge.
Crankshaft end-float =0.02 to 0.25 mm (0.001
to 0.011 in)
CAUTION: Oversize thrust washers are not
available, if end-float exceeds figure given,
crankshaft must be replaced.
13.Remove DTI.
14.Fit connecting rod bearings.See this Section.
15.Fit timing chain and sprockets.See this
Section.
16.Fit crankshaft rear oil seal.See this Section.
ProCarManuals.com

EMISSION CONTROL
7
DESCRIPTION AND OPERATION CRANKCASE EMISSION CONTROL
All internal combustion engines generate oil vapour and smoke in the crankcase as a result of high crankcase
temperatures and piston ring and valve stem blow-by. A closed crankcase ventilation system is used to vent
crankcase gases back to the air induction system and so reduce the emission of hydrocarbons.
Gases from the crankcase are drawn into the inlet manifold to be burnt in the combustion chambers with the fresh
air/fuel mixture. The system provides effective emission control under all engine operating conditions.
Crankcase gases are drawn through the breather port in the top of the camshaft cover and routed through the
breather hose and breather valve on the flexible air intake duct to be drawn into the turbocharger intake for
delivery to the air inlet manifold via the intercooler.
An oil separator plate is included in the camshaft cover which removes the heavy particles of oil before the
crankcase gas leaves via the camshaft cover port. The rocker cover features circular chambers which promote
swirl in the oil mist emanating from the cylinder head and camshaft carrier. As the mist passes through the series
of chambers between the rocker cover and oil separator plate, oil particles are thrown against the separator walls
where they condense and fall back into the cylinder head via two air inlet holes located at each end of the rocker
cover.
The breather valve is a pressure depression limiting valve which progressively closes as engine speed increases,
thereby limiting the depression in the crankcase. The valve is of moulded plastic construction and has a port on
the underside which plugs into a port in the flexible air duct. A port on the side of the breather valve connects to
the camshaft cover port by means of a breather hose which is constructed from a heavy duty braided rubber hose
which is held in place by hose clips. A corrugated plastic sleeve is used to give further protection to the breather
hose. The breather valve is orientation sensitive, and’TOP’is marked on the upper surface to ensure it is
mounted correctly.
It is important that the system is air tight. Hose connections to ports should be checked and the condition of the
breather hose should be periodically inspected to ensure it is in good condition.
ProCarManuals.com

18ENGINE MANAGEMENT SYSTEM
24
DESCRIPTION AND OPERATION GLOW PLUGS
The 4 glow plugs are located in the engine block on the inlet side, in cylinders 1 to 4. Cylinder 5 has no glow plug.
The glow plugs are a vital part of the engine starting strategy. The purpose of the glow plugs are:
Assist cold engine start.
Reduce exhaust emissions at low engine load/speed.
The main part of the glow plug is a tubular heating element that protrudes into the combustion chamber of the
engine.The heating element contains a spiral filament that is encased in magnesium oxide powder. At the tip of
the tubular heating element is the heater coil. Behind the heater coil and connected in series is a control coil. The
control coil regulates the heater coil to ensure that it does not overheat and cause a possible failure. The glow
plug circuit has its own control relay, located underneath the RH front seat.
Pre-heat is the length of time the glow plugs operate prior to engine cranking. The ECM controls the pre-heat time
of the glow plugs based on battery voltage and coolant temperature information via the glow plug relay.
Post-heat is the length of time the glow plugs operate after the engine starts. The ECM controls the post-heat time
based upon ECT information. If the ECT fails the ECM will operate pre-post heat time strategies with default
values from its memory. In this case, the engine will be difficult to start.
ProCarManuals.com

ENGINE MANAGEMENT SYSTEM
25
DESCRIPTION AND OPERATION Input / Output
The glow plugs receive a feed from the glow plug relay (C0215-3) on a yellow/black then individual black wires.
The ECM provides the earth path for the glow plug relay (C0151-6), working in tandem with the Alarm ECU. The
supply voltage heats the coils to approximately 1000°C (1832°F). The glow plug circuit is wired in parallel, the
body of each glow plug is screwed directly into the engine block which provides each glow plug with an earth path.
The glow plugs can fail in one or more of the following ways:
Heater coil open circuit.
Control coil open circuit.
Poor earth quality.
Short circuit to vehicle supply.
Short circuit to vehicle earth.
Harness fault.
Relay windings open circuit.
Incorrect relay fitted.
In the event of a glow plug failure, any of the following symptoms may be observed:
Difficult starting.
Excessive smoke emissions after engine start.
ProCarManuals.com

ENGINE MANAGEMENT SYSTEM
27
DESCRIPTION AND OPERATION The turbocharger is exposed to extremely high operating temperatures (up to 1000°C, 1832°F) because of the
hot exhaust gases and the high speed revolution of the turbine (up to 15,000 rev/min). In order to resist wear of
the turbine bearings a flow of lubrication oil is supplied from the engine lubrication system to keep the bearings
cool. Oil is supplied from a tapping at the front of the full-flow filter adaptor housing via a metal pipe with banjo
connections. Oil is returned to the sump via a metal pipe which connects to the cylinder block at a port below the
turbocharger assembly.
A heatshield is attached to the LH side of the engine to protect adjacent components from the heat generated at
the turbocharger. The heatshield is attached to the engine by 2 bolts. An additional bolt attaches the heatshield to
the turbocharger casting.
The ECM controls the amount of boost pressure the engine receives by way of the turbocharger. When full boost
is reached a control signal is sent to the wastegate modulator, and a vacuum is applied to the wastegate valve.
The wastegate valve opens, bypassing some of the exhaust gases away from the turbine to be output to the
exhaust system.
The engine should be allowed to idle for 15 seconds following engine start up and before the engine is switched
off to protect the turbocharger by maintaining oil supply to the turbine bearings.
INTERCOOLER
The intercooler is an air-to-air heat exchanger which lowers the intake air temperature to obtain a higher air
density for better combustion efficiency. The intercooler receives compressed air from the turbocharger via a
metal pipe. It cools the intake air via the intercooler matrix and delivers it to the intake manifold by means of a
rubber hose which connects between the intercooler outlet and the intake manifold. The rubber hose is connected
to ports at each end by metal clips.
The intercooler is located at the front of the engine bay, forward of the radiator.
ProCarManuals.com

19FUEL SYSTEM
4
DESCRIPTION AND OPERATION Fuel Pump
The fuel pump assembly comprises a top cover which locates the electrical connector, and four fuel pipe
couplings. The top cover is attached to a plastic cup shaped housing and retained on three sliding clips. Two coil
springs are located between the cover and the housing and ensure that the fuel pump remains seated positively at
the bottom of the tank when installed.
The housing locates the two stage fuel pump and also the fuel gauge sender unit. The lower part of the housing is
the swirl pot which maintains a constant level of fuel at the fuel pick-up. A coarse filter is located in the base of the
housing and prevents the ingress of contaminants into the pump and the fuel system from the fuel being drawn
into the pump. A fine filter is located in the intake to the low pressure stage to protect the pump from
contaminants. Flexible pipes connect the couplings on the top cover to the pump.
A non-return valve is located in the base of the housing. When the fuel tank is full, fuel pressure keeps the valve
lifted from its seat, allowing fuel to flow into the swirl pot. As the tank level reduces, the fuel pressure in the tank
reduces causing the valve to close. When the valve is closed, fuel is retained in the swirl pot, ensuring that the
swirl pot remains full and maintains a constant supply to the fuel pump.
The two stage pump comprises a high and low pressure stage. The low pressure stage draws fuel from the swirl
pot through a filter. The low pressure stage pumps fluid at a pressure of 0.75 bar (10.9 lbf.in) and a flow of 30
litres/hour (8 US Gallons/hour) to the fuel filter. A proportion of the fuel from the low pressure stage also passes,
via a restrictor, through a jet pump which keeps fuel circulating in the swirl pot. The high pressure stage draws the
low pressure fuel from the fuel filter and pressurises it to a pressure of 4.0 bar (58 lbf.in). The pressurised fuel is
then passed from the pump to the injectors at a flow of 180 litres/hour (47.6 US Gallons/hour). A fuel pressure
regulator is located at the rear of the engine and ensures that the delivery pressure remains at 4.0 bar (58 lbf.in)
by controlling the amount of fuel returning to the fuel tank.
The fuel pump has a maximum current draw of 15 Amps at 12 Volts and is supplied a feed (C0114-1) from the fuel
pump relay (C0730-2) on a white/purple wire.
Fuel Gauge Sender
The fuel gauge sender unit comprises a rotary potentiometer operated by a float. The float rises and falls with the
fuel level in the tank and moves the potentiometer accordingly.
A feed is supplied to the fuel gauge sender (C0114-1) by the fuel pump relay (C0730-2) on a purple/white then
white/purple wire. The sender is earthed (C0114-3) on a slate/black wire via header 287. The output voltage
(C0114-2) from the sender to the instrument pack (C1061-3) varies in relation to the fuel level. This output voltage
is connected to the fuel gauge C1054-2). The fuel gauge receives a battery voltage input (C1054-3) on a
white/green wire. This is compared with the output voltage from the potentiometer. The difference between the two
voltages determines the deflection of the fuel gauge pointer.
ProCarManuals.com

FUEL SYSTEM
5
REPAIR TURBOCHARGER
Service repair no - 19.42.01
Remove
1.Remove battery cover.
2.Disconnect battery negative lead.
3.Remove 3 bolts and remove engine acoustic
cover.
4.Release clip and disconnect breather hose from
camshaft cover.
5.Release clips and disconnect air flow meter from
air filter.
6.Disconnect multiplug from air flow meter.
7.Loosen clip screw and remove air inlet hose
from turbocharger.
8.Remove 3 bolts and remove exhaust manifold
heat shield.
9.Release clip and disconnect vacuum hose from
turbocharger wastegate.
10.Loosen clip screw and release air outlet hose
from turbocharger.
11.Remove turbocharger oil feed banjo bolt and
discard sealing washers.
12.Remove 3 nuts and release exhaust front pipe
from turbocharger and discard gasket.
13.Remove 3 nuts securing turbocharger to exhaust
manifold.
14.Loosen and unscrew turbocharger drain pipe
union from cylinder block.
15.Remove turbocharger and discard gasket.
16.Remove 2 bolts and remove turbocharger oil
drain pipe. Discard gasket.
ProCarManuals.com

19FUEL SYSTEM
6
REPAIR Refit
17.Clean turbocharger and oil drain pipe mating
faces.
18.Using a NEW gasket, fit turbocharger drain pipe
and tighten bolts to10 Nm (7 lbf.ft).
19.Using a new gasket fit turbocharger to exhaust
manifold and tighten nuts to30 Nm (22 lbf. ft).
20.Position oil drain pipe to cylinder block and
tighten union.
21.Using new gasket, align exhaust front pipe and
tighten nuts to30 Nm (22 lbf.ft)
22.Fit banjo bolt to oil feed pipe using new sealing
washers and tighten to25 Nm (18 lbf.ft).
23.Position air outlet hose to turbocharger and
tighten clip screw.
24.Position and secure vacuum hose to
turbocharger wastegate.
25.Position exhaust manifold heat shield and
tighten M6 bolts to9 Nm (7 lbf.ft)and M8 bolt to
25 Nm (18 lbf.ft).
26.Position air inlet hose to turbocharger and
tighten clip screw.
27.Connect air flow meter to air filter and secure
clips.
28.Connect air flow meter multiplug.
29.Connect breather hose and secure clip.
30.Fit engine acoustic cover and secure with bolts.
31.Reconnect battery negative lead.
32.Fit battery cover.FILTER ASSEMBLY - AIR
Service repair no - 19.10.01
Remove
1.Loosen clip screw and release intake hose from
air filter.
2.Release 2 clips securing air flow meter.
3.Release air flow meter from air filter cover and
position aside.
4.Disconnect multiplug from AAP sensor.
5.Release air filter from 3 grommets, remove
assembly and discard’O’ring.
6.Remove 2 screws, remove AAP sensor and
discard’O’ring.
ProCarManuals.com