Threads damaged ......... A .. Require repair or replacement.
Threads stripped (threads
missing) ............... A ............ Require replacement.
Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
(1) - Refer to manufacturer's diagnostic trouble code
procedure and require repair or replacement of
affected component(s).
( 2) - Determine cause and correct prior to repair or
replacement of part.
( 3) - Determine source of contamination, such as engine coolant,
fuel, metal particles, or water. Require repair or
replacement. Check for accepted cleaning procedure.
( 4) - Inoperative includes intermittent operation or out of
OEM specification. Some components may be serviceable.
\
\
\
\
\
\
\
COOLANT
COOLANT INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Acidity (pH) incorrect .. 1 ........... Suggest correction or
replacement.
Contaminated ............ B ...... ( 1) Require replacement or
recycling. Further
inspection required.
Level incorrect ......... B .......... ( 2) Require filling to
proper level.
Maintenance intervals ... 3 ........ ( 3) Suggest replacement.
Mixture incorrect ....... B ........... Require correction or
replacement.
Type incorrect .......... B ............ Require replacement.
( 1) - Determine source of contamination and require correction
prior to coolant replacement.
( 2) - Determine source of incorrect level and suggest repair.
( 3) - The system should be drained and/or flushed and
refilled with correct coolant according to OEM
recommended service interval and procedures.
\
\
\
\
\
\
\
COOLING FAN BLADES
COOLING FAN BLADE INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Application incorrect ... B ............ Require replacement.
Attaching hardware
broken ................. A ... Require repair or replacement
of hardware.
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware not
functioning ............ A ... Require repair or replacement
of hardware.
Procedure Cylinders No.
Step 1 (1)
Intake Valve ............................................ 1, 2 & 4
Exhaust Valve ........................................... 1, 3 & 5
Step 2 ( 2)
Intake Valve ............................................ 3, 5 & 6
Exhaust Valve ........................................... 2, 4 & 6
( 1) - Perform STEP 1. See Fig. 2.
( 2) - Rotate engine clockwise (viewed from front of engine) one full
revolution from TDC on cylinder No. 1 (STEP 1) and align
reference marks. Perform STEP 2. See Fig. 2.
\
\
\
\
\
\
\
VALVE CLEARANCE SPECIFICATIONS ( 1)\
\
\
\
\
\
\
Application In. (mm)\
Intake Valve ............................. ( 2) .006-.015 (.152-.381)
Exhaust Valve ............................ ( 3) .015-.030 (.381-.762)
( 1) - Adjust valve clearance with engine temperature less than
140
F (60 C).
( 2) - Set to .010" (.254 mm) if adjustment is necessary.
( 3) - Set to .020" (.508 mm) if adjustment is necessary.
\
\
\
\
\
\
\
3) Rotate engine clockwise (viewed from front of engine) one\
full revolution from TDC on cylinder No. 1 and align reference marks.
Check valve clearance on proper valves. Perform STEP 2. See Fig. 2.
See VALVE CLEARANCE ADJUSTING SEQUENCE table. Ensure valve clearance
is within specification. See VALVE CLEARANCE SPECIFICATIONS table. If
valve clearance is within specification, go to next step. If valve
clearance is not within specification, loosen rocker lever adjusting
screw lock nut, and adjust valve clearance by rotating rocker lever
adjusting screw. Tighten rocker lever adjusting screw lock nut to
specification. See TORQUE SPECIFICATIONS. Go to next step.
4) Install valve cover, fuel pump access cover and battery
cables.
FUEL INJECTION PUMP TIMING
CHECKING FUEL INJECTION PUMP TIMING
NOTE: With Bosch VP 44 pump, no mechanical adjustments are
necessary. All timing and fuel adjustments are performed by
Engine Control Module (ECM). If a FTC indicating engine sync
error or static timing error has been set, perform following
adjustment. If FTC sets after installing a new pump, pump
keyway has probably been installed backward.
CAUTION: DO NOT allow nut and washer to fall inside front cover.
1) Remove fuel pump access cover, shaft nut and washer.
Ensure keyway aligning pump shaft to pump gear has not slipped. If
keyway has slipped, repair as necessary.
2) Remove timing gear cover. See REMOVAL, OVERHAUL &
INSTALLATION - TRUCKS - DIESEL article. Using a T-type puller, remove
injection pump gear from shaft. Ensure key has been installed in
keyway with arrow pointing to rear of pump. Pump timing is calibrated
to pump keyway. Ensure 3-digit number on key matches number on pump
NOTE: Copied Vehicle Speed Sensors from Engine UIGs & added
Air Gap incorrect, loose, and wire lead misrouted. For
"contaminated" removed coolant & fuel examples from note.
SPEED SENSOR INSPECTION
\
\
\
\
\
\
\
Condition Code Procedure
Air gap incorrect ....... B ....... (1) Require adjustment or
replacement.
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware
threads damaged ........ A ... Require repair or replacement
of hardware.
Attaching hardware
threads stripped
(threads missing) ...... A .. Require repair or replacement
of hardware.
Connector broken ........ A .. Require repair or replacement.
Connector (Weatherpack
type) leaking ........... A .. Require repair or replacement.
Connector melted ........ A ........... ( 2) Require repair or
replacement.
Connector missing ....... C ............ Require replacement.
Contaminated ............ A ........... ( 3) Require repair or
replacement.
Inoperative ............. B ........... ( 4) Require repair or
replacement. Further
inspection required.
Lead routing incorrect .. B ..... Require rerouting according
to vehicle manufacturer's
specifications.
Leaking ................. A .. Require repair or replacement.
Loose ................... A .. Require repair or replacement.
Missing ................. C ............ Require replacement.
Resistance out of
specification .......... B .. Require repair or replacement.
Sensor housing cracked .. 2 ............ Suggest replacement.
Terminal broken ......... A .. Require repair or replacement.
Terminal burned,
affecting performance .. A ........... ( 2) Require repair or
replacement.
Terminal burned, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal corroded,
affecting performance .. A .. Require repair or replacement.
Terminal corroded, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal loose,
affecting performance .. B .. Require repair or replacement.
Terminal loose, not
affecting performance .. 1 .. Suggest repair or replacement.
Threads damaged ......... A .. Require repair or replacement.
Threads stripped
(threads missing) ...... A ............ Require replacement.
Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead misrouted ..... B . Require re-routing according to
vehicle manufacturer's
Fig. 3: Typical Thermostatic Air Cleaner System
FUEL EVAPORATIVE SYSTEM (EVAP)
The EVAP system allows for proper fuel system ventilation
while preventing fuel vapors from reaching the atmosphere. This means
that vapors must be caught and stored while the engine is off, which
is when most fuel evaporation occurs. When the engine is started,
these fuel vapors can be removed from storage and burned. In most
systems, storage is provided by an activated charcoal (or carbon)
canister. See Fig. 4. On a few early systems, charcoal canisters are
not used. Instead, fuel vapors are vented into the PCV system and
stored inside the crankcase.
The main components of a fuel evaporation system are a sealed
fuel tank, a liquid-vapor separator and vent lines to a vapor-storing
canister filled with activated charcoal. The filler cap is normally
not vented to the atmosphere, but is fitted with a valve to allow both
pressure and vacuum relief.
Although a few variations do exist between manufacturers,
basic operation is the same for all systems. Check for presence of
vapor storage canister or crankcase storage connections when required.
Ensure required hoses, solenoids, etc., are present and connected
properly. Check for proper type fuel tank cap. Check for any non-OEM
or auxiliary fuel tanks for compliance and the required number of
evaporation canisters.
Fig. 4: Typical Fuel Evaporative System
CATALYTIC CONVERTERS
Oxidation Catalyst (OC)
This type of converter is the most common. It may use pellets
or monolith medium, depending upon application. See Fig. 5. Platinum
and palladium (or platinum alone) are used as catalyst in this type of\
converter.
Visually check for presence of catalytic converter(s). Check
for external damage such as severe dents, removed or damaged heat
shields, etc. Also check for pellets or pieces of converter in the
tailpipe.
Fig. 5: Typical Oxidation Catalytic Converter (Pellet Type) Shown;
Typical Three-Way Catalytic Converter Is Similar
Courtesy of General Motors Corp.
Three-Way Catalyst (TWC)
This type of converter is nearly identical to a conventional
Spark control systems are designed to ensure the air/fuel
mixture is ignited at the best possible moment to provide optimum
efficiency and power and cleaner emissions.
Ensure vacuum hoses to the distributor, carburetor, spark
delay valves, thermal vacuum switches, etc., are in place and routed
properly. On Computerized Engine Controls (CEC), check for presence of\
required sensors (O2, MAP, CTS, TPS, etc.). Ensure they have not been
tampered with or modified.
Check for visible modification or replacement of the feedback
carburetor, fuel injection unit or injector(s) with a non-feedback
carburetor or fuel injection system. Check for modified emission-
related components unacceptable for use on pollution-controlled
vehicles.
AIR INJECTION SYSTEM (AIS)
Air Pump Injection System (AP)
The air pump is a belt-driven vane type pump, mounted to
engine in combination with other accessories. The air pump itself
consists of the pump housing, an inner air cavity, a rotor and a vane
assembly. As the vanes turn in the housing, filtered air is drawn in
through the intake port and pushed out through the exhaust port. See
Fig. 13 .
Check for missing or disconnected belt, check valve(s),
diverter valve(s), air distribution manifolds, etc. Check air
injection system for proper hose routing.
Fig. 13: Typical Air Pump Injection System
Courtesy of General Motors Corp.
Pulsed Secondary Air Injection (PAIR) System
PAIR eliminates the need for an air pump and most of the
associated hardware. Most systems consists of air delivery pipe(s),
pulse valve(s) and check valve(s). The check valve prevents exhaust
gases from entering the air injection system. See Fig. 14.
Ensure required check valve(s), diverter valve(s), air
distribution manifolds, etc., are present. Check air injection system
for proper hose routing.
EARLY FUEL EVAPORATION (EFE)
The EFE valve is actuated by either a vacuum actuator or a
bimetal spring (heat-riser type). The EFE valve is closed when engine
is cold. The closed valve restricts exhaust gas flow from the exhaust
manifold. This forces part of the exhaust gas to flow up through a
passage below the carburetor. As the exhaust gas quickly warms the
intake mixture, distribution is improved. This results in better cold
engine driveability, shorter choke periods and lower emissions.
Ensure EFE valve in exhaust manifold is not frozen or rusted
in a fixed position. On vacuum-actuated EFE system, check EFE thermal
vacuum valve and check valve(s). Also check for proper vacuum hose
routing. See Fig. 15.
Fig. 15: Typical Vacuum-Actuated EFE System
Courtesy of General Motors Corp.
EMISSION MAINTENANCE REMINDER LIGHT (EMR) (IF EQUIPPED)
is to be serviced, slowly loosen inlet side of fuel fill tube fitting
at check valve. It is normal for approximately 25 psi of residual
natural gas pressure to flow from loosened fitting. At this point, all
fuel tubes are purged of natural gas between fuel cylinders and
engine. It is now okay to open fuel system.
WARNING: Fuel cylinders still contain high-pressure fuel.
Compressed Natural Gas Fuel Cylinder Purging (5.2L)
1) Open manual shutoff valve. Open only fuel control valve(s)\
(counterclockwise) on fuel cylinder(s) to be serviced. Close all oth\
er
control valve(s) (clockwise) on fuel cylinder(s) not being service\
d.
2) Start and operate engine until it runs out of fuel.
Attempt 3 more engine starts. At this point, all fuel tubes and opened
cylinders are purged of natural gas between fuel cylinders and engine.
It is now okay to open fuel system.
WARNING: Fuel cylinders not being serviced still contain high-pressure
fuel.
FUEL LINE DISCONNECT FITTINGS
Removal & Installation (Tab Type Fitting)
1) Release fuel pressure. See FUEL PRESSURE RELEASE.
Disconnect negative battery cable. Ensure area around fuel line and
disconnect fitting is clean. Place shop towel around fuel line.
2) On 2-tab connectors, squeeze retainer tabs together and
pull fuel tube/quick-connect fitting assembly off of fuel tube nipple.
On single-tab connectors, use screwdriver to pry up pull tab. See
Fig. 1 . Raise pull tab until it separates from quick-connect fitting.
Discard old pull tab. Disconnect quick-connect fitting from fuel line.
CAUTION: DO NOT install a quick-connect fitting without retainer being
either in fuel tube or already in quick-connect fitting.
After installing fuel line in disconnect fitting, pull on
fuel line and disconnect fitting to ensure fuel line is
locked in place.
3) To install, coat fuel tube nipple with clean 30W engine
oil. Insert quick-connect fitting into fuel tube until stop on fuel
tube rests against back of quick-connect fitting.
4) On single-tab connectors, obtain NEW pull tab. Push tab
down until it locks into quick-connect fitting. On 2-tab connectors,
firmly pull on fuel tube and fitting to ensure retainer and quick-
connect fitting are locked.
Removal & Installation (Retainer Type Fitting)
1) Release fuel pressure. See FUEL PRESSURE RELEASE.
Disconnect negative battery cable. Ensure area around fuel line and
disconnect fitting is clean. Place shop towel around fuel line.
2) Pull backward on disconnect fitting while depressing
plastic ring into disconnect fitting. See Fig. 2. Separate fuel line
from disconnect fitting.
NOTE: Plastic retainer ring must be pressed squarely into fitting
body. If retainer is cocked during removal, it may be
difficult to disconnect fitting. Use open-end wrench on
shoulder of plastic retainer to ease disconnection.
3) To install, ensure plastic ring is in outward position
(away from disconnect fitting). If plastic ring is in inward position
(toward disconnect fitting), disconnect fitting must be replaced.
4) Lubricate end of fuel line with 30W engine oil. Insert