5A-30 AUTOMATIC TRANSMISSION
Solenoid Valve Symbols (On/off Solenoids)
The solenoid symbol shown adjacent to each solenoid on the
hydraulic system schematics indicates the state of the oil flow
through the solenoid valve with the power On or 0ff. Refer to
figure 3.6 for the On/off operational details of NO solenoid
valves.
Normally Open (NO) Solenoid
POWER ON
Line 500 port is closed. The output port is open to exhaust at
the solenoid valve.
POWER OFF
The exhaust port is closed. The output port is open to line 500,Figure 3.6- Normally Open (NO) Symbols
Variable Pressure Solenoid Multiplexing System
Friction element shifting pressures are controlled by the variable pressure solenoid (VPS).
Line pressure is completely independent of shift pressure and is a function of throttle position, gear state and engine
speed.
S5 is a proportional or variable pressure solenoid that provides the signal pressure to the clutch and band regulator
valves thereby controlling shift pressures.
VPS pressure is multiplexed to the clutch regulator valve, the band regulator valve and the converter clutch regulator
valve during automatic gearshifts.
A variable pressure solenoid produces a hydraulic pressure inversely proportional to the current applied. During a
gearshift the TCU applies a progressively increasing or decreasing (ramped) current to the solenoid. Current applied
will vary between a minimum of 200 mA and a maximum of 1000 mA, Increasing current decreases output (55)
pressure. Decreasing current increases output (55) pressure.
Line 500 pressure, (approximately 440 to 560 kPa), is the reference pressure for the VPS, and the VPS output
pressure is always below line 500 pressure.
When the VPS is at standby, that is no gearshift is taking place, the VPS current is set to 200 mA giving maximum
output pressure.
Under steady state conditions the band and clutch regulator valve solenoids are switched off. This applies full Line
500 pressure to the plunger and because Line 500 pressure is always greater than S5 pressure it squeezes the S5
oil out between the regulator valve and the plunger. The friction elements are then fed oil pressure equal to Line 500
multiplied by the amplification ratio.
When a shift is initiated the required On/off solenoid is switched on cutting the supply of Line 500 to the plunger.
At the same time the VPS pressure is reduced to the ramp start value and assumes control of the regulator valve by
pushing the plunger away from the valve. The VPS then carries out the required pressure ramp and the timed shift is
completed by switching Off the On/off solenoid and returning the VPS to the standby pressure.
This system enables either the band or clutch or both to be electrically controlled for each gearshift.
Mode Indicator Light
Depending on the application, the mode indicator light may be used to indicate the mode that has been selected or
if an overheat condition exists. The mode indicator light is usually located on the instrument cluster.
Communication Systems
CAN
The controller area network (CAN) connects various control modules by using a twisted pair of wires, to share
common information. This results in a reduction of sensors and wiring. Typical applications include using the engine
controller to obtain the actual engine speed and throttle position, and adding these to the network. The ABS controller
(if fitted) can be used to obtain the road speed signal. This information is then available to the TCU without any
additional sensors.
5A-60 AUTOMATIC TRANSMISSION
DIAGNOSIS
DIAGNOSTIC SYSTEM
Recommended Test Equipment and Procedure
The test equipment is designed to be used with the control modules in all vehicles. The components used in the
transmission application are:
lMulti Function Tester, and
lAppropriate vehicle for testing.
Multi Function Tester (MFT)
The MFT is programmed with the special vehicle diagnostic software that allows selection of the unit under test.
The program allows the proper communication to the Transmission Control Unit (TCU).
It then requests information from the user via a menu system to select the required set up.
Examples are viewing codes, clearing error codes, and real-time operation. Set up and operation instructions are
detailed in the user manual.
This equipment can be used by trained personnel such as technicians and mechanics to diagnose electronic and
wiring problems relating to the vehicle transmission. Information that is available includes engine and road (shaft)
speed, transmission oil temperature, throttle position, solenoid/gear status and gear lever position. Current and
stored faults detected by the electronics are also available.
TCU Pin Description
The TCU pin descriptions are listed in table 6.1.1.
The wiring loom pins are shown in figure 6.1.1
Pin
No.
1
2
3
4
5
6
7
8Identification
Common Ground
Do not use
Mode Indicator Lamp -
‘Winter’
Gear Position ‘Park’
Lamp
Gear Position ‘Reverse’
Lamp
Gear Position ‘Neutral’
Lamp
Do not use
Engine Speed Input
Sensor (-Ve)Type
GND
-
OP
OP
OP
OP
-
IPDescription
Main power ground (or the module. Connects
directly to the battery negative terminal.
Indicates ‘WINTER’ mode shift schedule is se-
lected.
Drives the jewel in the instrument cluster to in-
dicate ‘PARK’ gear lever position.
Drives the jewel in the instrument cluster to in-
dicate ‘REVERSE’ gear lever position.
Drives the jewel in the instrument cluster to in-
dicate ‘NEUTRAL’ gear lever position.
Flywheel/Ring gear pulses to indicate engine
speed. 4WD
(Diesel)
O
O
l
l l l
l
4WD
(Gas)
O
O
O
l
l l l
l
l
Table 6.1.1 - TCU Pin Description
AUTOMATIC TRANSMISSION 5A-61
Pin
No.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30Identification
Mode Indicator Lamp -
‘Power’
Throttle Position Sensor
Output as Pulse Width
Modulation for TOD
Air Conditioner Input Signal
Kickdown Switch
Mode Switch
Transfer Case Input
(High) -4WD Lamp High
Ignition Switch
Do not use
Gear Position ‘1’ Lamp/
Gear Position Code 1
*Gear Position ‘2’ Lamp/
Gear Position Code 2*
Gear Position ‘3’ Lamp/
Gear Position Code 3*
Gear Position ‘Drive’
Lamp/
Gear Position Code 4*
CAN (-ve)
CAN (+ve)
K-line Communication Link
Engine Speed Input
Sensor (+ve)
Road Speed Pulses
Shaft Speed Sensor
Signal
Throttle Position Sensor -
Ground
Throttle Position Sensor -
Reference
Throttle Position Sensor -
Input Signal
Transfer(or Case Input
(Low) - 4WD Lamp LowType
OP
OP
-
IP
IP
IP
IP
-
OP
OP
OP
OP
I/O
I/O
I/O
IP
OP
IP
GND
REF
IP
IPDescription
Indicates ‘POWER’ mode shift schedule is se-
lected.
Provides an analogue signal of the throttle po-
sition for the Torque on Demand (TOD) Con-
trol Module.
Input
Switch to indicate when a kickdown is required
at high throttle position.
Switch to select ‘NORMAL’, ‘POWER’ or ‘WIN-
TER’ shift schedule.
Voltage varies from OV to 12V.
Switch to indicate 4WD’HIGH RANGE’ is se-
lected.
Ignition power is used as the main power source
to drive the unit and the solenoids.
Drives jewel in the instrument cluster to indi-
cate
gear leverposition’1'. Drives jewel in the instru-
ment cluster to indicate
gear lever position’2'. Drives jewel in the instru-
ment cluster to indicate gear lever position’3'.
Drives jewel in the instrument cluster to indi-
cate
‘DRIVE’. gear lever position.
CAN low side bus communication (CANL).
CAN high side bus communication (CANH).
Diagnostic information and vehicle coding.
Flywheel/Ring gear pulses to indicate engine
speed.
Road speed signals derived from shaft speed
sensors.
This sensor transmit shaft speed signal to the
TCU.
Throttle position sensor ground.
This is the 5V reference voltage supply gener-
ated by the unit for the throttle position sensor.
This sensor is a resistance potentiometer indi-
cating throttle position.
Voltage varies 0V to 5V.
Switch to indicate 4WD’LOW RANGE’ is se-
lected. 4WD
(Diesel)
O
O
O
O
l
l
l
4WD
(Gas)
O
O
O
O
O
O
O
O
l
l
l
ll
ll
ll
ll
ll
ll
l
l
ll
l
ll
l
l
l
l
ll l
5A-62 AUTOMATIC TRANSMISSION
Identification
Gear Lever Position
Transmission Oil
Temperature
Solenoid 4
Solenoid 1
Do not use
Solenoid 5
Return (-ve)
Gear Lever Position -
Ground
Transmission Oil
Temperature - Ground
Solenoid 6
Solenoid 2
Solenoid 3
Solenoid 7
Do not use
Solenoid 5 (+ve)Type
IP
IP
OP
OP
-
IP
GND
GND
OP
OP
OP
OP
-
OPDescription
This switch has discreet values indicating the
positions selected by the gear shift lever
(PRNDL). Voltage varies 0V to 5V.
Resistive sensor indicates transmission tem-
perature .
High R = low temp
Low R = high temp
Voltage varies 0V to 5V.
On/Off solenoid normally open, combines with
other On/off solenoid 3 for shift quality and se-
quencing.
On/off solenoid normally open, combines with
other On/off solenoid to set the selected gear.
This ensures the earth path for the VPS and
the current in this line is monitored to give feed-
back control of the VPS.
PRNDL switch ground.
Ground reference for temperature sensor in-
put.
On/Off solenoid normally open, sets low/high
line pressure.
On/off solenoid normally open, combines with
other On/off solenoid to set the selected gear.
On/off solenoid normally open, combines with
On/off solenoid 4 for shift quality and sequenc-
ing.
On/off solenoid normally open, locks up the
torque converter to Increase cruising efficiency.
This is the variable force solenoid which ramps
the pressure during gear changes and solenoid
switching, to enhance transmission shift quality. 4WD
(Diesel)
O
O
l
l
4WD
(Gas)
O
O
l
l
ll
ll
ll
ll
Pin
No.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
ll
ll
ll
ll
ll
ll
l= circuit connected
O = circuit not connected
* = unique
OP = Output
IP = Input
I/O = Input/output
GND = Ground
REF = Reference Notice :
5A-64 AUTOMATIC TRANSMISSION
Default Transmission Operating Modes
The TCU relies on accurate information from its inputs and complete control of its outputs to effectively control the
transmission. To ensure that it has both valid inputs and functioning outputs, the TCU carries out both hardware and
software fault detection routines. The TCU will respond to any faults detected by adopting the operating modes which
are detailed below.
The following symptoms of faults are the most obvious results of each fault under ‘normal’ conditions.
There is always the possibility that a fault may not be detected. If undetected fault conditions are present, the
operation of the transmission is difficult to predict.
1 Throttle Fault
lAll shifts will occur as if a nominal throttle (approx. 44%) were applied for shift scheduling.
lAll shifts will be firm as full throttle and hence high engine torque is assumed.
lThe torque converter will be unlocked at all times.
lAll downshifts initiated by the shift lever will occur as though they were ‘automatic’ shifts. That is the engine
braking effect will not occur until near the end of the shift.
lLine pressure will always stay high (solenoid 6 OFF) to cope with assumed high throttle/torque.
If a fault is undetected, the percent throttle is most likely to be interpreted as higher than actual, resulting in late
upshifts, early downshifts, firm shifting and a harsh 3-1 shift when stopping.
2 Throttle Not Learnt Fault
The transmission operates from default throttle calibration values which results in the evaluation of the throttle being
higher (more open) than it is. There(ore at zero throttle settings, the transmission may calculate that sufficient throttle
opening is present to justify high line pressure and switch solenoid 6 to OFF.
Other symptoms are:
a. late upshifts and
b. lock-up maintained at zero throttle when the vehicle speed is sufficiently high.
3 Engine Speed Fault
lAll shifts will be firm because an engine speed corresponding to peak engine torques is assumed.
If a fault is undetected, the engine speed is likely to be interpreted as stalled resulting in soft shifting possibly with an
end of shift bump.
4 Vehicle Speed Sensor Fault
lAll shifts will be controlled by the shift lever with skip downshifts disabled and downshifts only allowed if the
engine speed is low. Fourth gear will be inhibited.
lThe torque converter will be unlocked at all times.
If a fault is undetected, the vehicle is likely to be interpreted as being stationary resulting in first gear operation at all
times. Note that speedometer transducer faults are likely to cause the vehicle’s speedometer to become inoperative.
5 Gear Lever Fault (Inhibitor/PRNDL Switch)
lThe gear lever is assumed to be in the Drive position.
lThe transmission is limited to 2nd,3rd, and R gears only.
lThe rear band will apply at all times when the lever is shifted to P, R or N. (B2 inhibition and reverse lockout
protection is disabled.)
lThe torque converter will be unlocked at all times.
lManually (gear lever) initiated downshifts will not be available.
If a fault is undetected, the gear lever position is likely to be interpreted as being higher than actual. Where Park is the
highest position and Manual 1 is the lowest, the result being the availability of higher gears than selected by the gear
lever.
AUTOMATIC TRANSMISSION 5A-65
If the gear lever is incorrectly adjusted, the transmission may shift gears on bumpy road surfaces.
6 Transmission Oil Temperature Sensing Fault
lAll shifts will be firm until the transmission has warmed up, because a high transmission oil temperature is
assumed.
If a fault is undetected, the temperature is likely to be evaluated as being lower than actual, resulting in softer shifts
with ‘end bump’ (very firm feel at the end of the shift).
7 Mode Setting Fault
lAll shifts will occur as if the mode is set to ‘NORMAL’.
lThe mode indicator will always be off indicating that ‘NORMAL’ mode is selected.
lThe mode indicator will not respond to changes in switch setting.
If a fault is undetected, the mode as indicated by the mode indicator is not likely to respond to the mode switch.
8 Battery Voltage Sensing Fault
If the battery voltage is low then shifts to first gear are inhibited.9 the battery voltage is high (>16.5V) then the
transmission goes into limp home (LHM) mode.
If a fault is undetected, the transmission is likely to incorrectly evaluate an ON/OFF solenoid fault resulting in limp
home mode (LHM) operation.
9 ON/OFF Solenoid Fault (Solenoids 1,2,3 and 4)
The transmission adopts its limp home mode (LHM) operation, described above. However, if solenoid 1 is faulty then
the fourth gear LHM strategy will be adopted independent of vehicle speed.
If a fault is undetected, the operation of the transmission is dependent on which solenoid is actually faulty. The
characteristics for different solenoid fault conditions are listed in table 6.1.2.
10 ON/OFF Solenoid Fault (Solenoids 6,7)
If solenoid 6 is found faulty it is always disabled resulting in high line pressure being applied continuously.
If solenoid 7 is found faulty it is disabled resulting in the transmission being locked always.
The transmission does not go into LHM.
11 Variable Pressure Solenoid Fault
The transmission adopts its LHM operation.
If a fault is undetected, the transmission shift feel is likely to be poor for all shifts.
12 Software Fault
The transmission adopts the third gear LHM strategy of operation, independent of vehicle speed. The operation of
the TCU under this condition is difficult to predict. Its operation may be erratic.
If a fault is undetected, the operation of the TCU is likely to be erratic.
13 Power Supply Fault
The transmission adopts the third gear LHM strategy of operation, independent of vehicle speed. If there is an
intermittent power supply connection, the TCU will power-up in fourth gear and then shift to the appropriate gear to
satisfy the conditions present. The power supply is not monitored for fault evaluation.
All faults except for solenoid faults can be recovered without having to turn the TCU off and back on. However, in
general the recovery requires that no faults are present for a period of time (approx. 3 or 30 seconds). Recovery from
a fault will not clear the fault from the keep alive memory
14 Transmission Sump Temperature Exceeding 135°C
lThe converter lockup clutch will be applied at lower speeds, causing a shudder through the vehicle.
lThe mode indicator will flash in some vehicles.
These faults can be due to the transmission oil overheating or due to an incorrect signal received from the temperature
sensor.
AUTOMATIC TRANSMISSION 5A-67
Table 6.1.3 - Diagnostic Trouble Messages
Description / Cause
There have been no faults recorded since the TCU was last cleared. If
the fault history has never been cleared, then there have been no
faults recorded since the TCU was originally powered up.
There is an internal fault within the TCU.
The voltage measured by the TCU corresponding to the battery sup-
ply voltage has been outside the range of the maximum operating
voltage of 16.5 volts.
The minimum operating voltage depends on the transmission tem-
perature but is typically between 8-9 V for a warm transmission.
The voltage measured by the TCU from the throttle potentiometer has
been outside acceptable levels.
This would typically indicate a loose connection in the wiring to, or
within, the throttle sensor which has caused the signal at the TCU to
read 0V or 5V.
The voltage measured by the TCU across the temperature Input ter-
minals has been outside acceptable levels.
This would typically be caused by a loose connection or short to ground
in the wiring to, or within, the temperature sensor which has caused
the signal at the TCU to read 0V or 5V.
The voltage measured by the TCU across the shift lever input termi-
nals has been outside acceptable levels for a significant length of
time. This would typically be caused by a loose connection or short to
ground in the wiring to, or within, the inhibitor switch which has caused
the signal at the TCU to read 0V or 5V.
The signal from the ignition, of ignition pulses, has either been non-
existent or has been unreliable.
There are two reasons this fault could occur. The first is due to a lack
of ignition pulses when other TCU inputs would indicate that the en-
gine is running, that is the gear lever is in a driving position, the throttle
is applied and vehicle speed increasing.
The second cause of this (aunt is the frequency of the pulses of the
ignition pulse input to the TCU indicate an unachievable engine speed.
The pulses from the shaft speed sensor have either been non-exis-
tent or have been unreliable.
There are three reasons this fault could occur. The first is due to a
sudden loss of speedometer pulses at a time when they were fre quent,
thus indicating an unachievable degree of deceleration of the drive
line. The second cause of this fault is that the frequency of the pulses
on the shaft speed sensor input to the TCU indicate an unachievable
propeller shaft speed. The third is the presence of a high engine speed
in a driving gear with no speedometer pulses. Condition
Test Pass
Transmission Control
Module Fault
Battery Voltage Input
Fault
Throttle Input Fault
Temperature Input Fault
Shift Lever Position
Input Fault
(Inhibitor/PRNDL Switch)
Engine Speed Sensor
Fault
Shaft Speed Sensor
Fault
(Speedo Sensor)Solenoid
1
2
3
4
5
6
7
8
AUTOMATIC TRANSMISSION 5A-73
Table 6.2.3 - Shift Quality Faults
Action
Check the resistance. Replace the inhibitor
switch as necessary.
Inspect and replace the sensor as necessary.
Inspect and adjust the band as necessary.
Inspect and replace the’0’rings as necessary.
Inspect, repair or replace S5 as necessary.
Inspect, repair or replace S1 or S4 as neces-
sary.
Inspect, repair or replace the BAR as neces-
sary.
Inspect and repair as necessary.
Inspect and clean CCCV.
Inspect, repair or replace as necessary. Possible Cause
Faulty inhibitor switch.
Faulty throttle position sensor.
Incorrect front band adjustment.
Damaged front servo piston’0’rings.
Faulty or damaged variable pressure so-
lenoid (S5).
Faulty S1 or S4 solenoid.
Faulty band apply regulator valve (BAR).
Misassembled front servo return spring.
Jammed converter clutch control valve
(CCCV).
Faulty solenoid 7.Symptom
Harsh 1-2 shift
stalls when Drive
or Reverse
selected Shudder
on Rolldown