is 600-700 RPM. Turn engine off. Curb idle speed is automatically
controlled by Idle Air Control (IAC) system. If curb idle speed is not\
as specified, see DTC P0505 in G - TESTS W/CODES article.
4) Disconnect waterproof female connector from Brown ignition
timing check connector. See Fig. 4. Using a jumper wire, ground
ignition timing check terminal to read basic ignition timing. Using
timing light, read basic ignition timing value. See
IGNITION TIMING SPECIFICATIONS table. If basic ignition timing is
within specification, go to next step. If basic ignition timing is not
within specification, see DTC P0335 in G - TESTS W/CODES article.
5) Remove jumper wire to read actual ignition timing. Using
timing light, read actual ignition timing value. If actual ignition
timing is not within specification, see DTC P0335 in G - TESTS W/CODES
article.
All Other Models
1) Ignition timing is controlled by Powertrain Control Module
(PCM) and is not adjustable. Manufacturer provides procedure for
checking timing. On models with distributor, DO NOT attempt to adjust
ignition timing by rotating distributor.
2) Connect scan tool to Data Link Connector (DLC). DLC is
located below dash, near steering column. See Fig. 2. Install a timing
light. Start engine and allow it to idle.
3) Using scan tool, read curb idle speed (RPM). Ensure curb
idle speed is about 750 RPM. Turn engine off. Curb idle speed is
automatically controlled by Idle Air Control (IAC) system. If curb
idle speed is not as specified, see DTC P0505 in G - TESTS W/CODES
article.
CAUTION: MFI system actuator test must be cancelled or test will
continue to run for 27 minutes. Driving vehicle under this
condition may damage engine.
4) Using scan tool, select MFI SYSTEM ACTUATOR TEST, then
select item 17 (BASIC IGNITION TIMING). Read basic ignition timing
value. See IGNITION TIMING SPECIFICATIONS table. If basic ignition
timing is within specification, go to next step. If basic ignition
timing is not within specification, cancel MFI system actuator test.
See DTCS P0100 (except Mirage 1.5L), P0105, P0115 and P0335 in G -
TESTS W/CODES article.
5) Read actual ignition timing value. If actual ignition
timing is not within specification, cancel MFI system actuator test.
See DTCS P0100 (except Mirage 1.5L), P0105, P0115 and P0335 in G -
TESTS W/CODES article.
IDLE SPEED & MIXTURE
* PLEASE READ THIS FIRST *
NOTE: Perform adjustments with engine at normal operating
temperature, cooling fan and accessories off, transmission
in Park or Neutral, and front wheels in straight-ahead
position.
BASIC IDLE SPEED
NOTE: Basic idle speed adjustment information on Eclipse 2.0L
non-turbo engine is not available from manufacturer at time
of publication.
3000GT
1) Ensure vehicle is at normal operating temperature with all
DOOR LOCKS - POWER & KEYLESS ENTRY
1998 Mitsubishi Montero
1998 ACCESSORIES & EQUIPMENT
Mitsubishi - Keyless Entry & Power Door Locks
Montero & 3000GT
DESCRIPTION & OPERATION
On 3000GT, power door locks are controlled by driver or
passenger switches which send signals to Electronic Timer Alarm
Control System (ETACS) ECU. ETACS-ECU sends appropriate signals to
individual door lock actuators through individual relays.
The following features are incorporated in power door lock
systems that have an ETACS-ECU:
* Once locked door is closed, system will unlock door if key
remains in ignition switch.
* Continuous switching between lock and unlock of door will
disable system for about one minute.
On Montero, power door lock actuator receives signal from
individual control relay that is operated by a switch incorporated in
actuator. On all models, all door locks are actuated with operation of
one lock.
Montero and 3000GT offer optional keyless entry system. Use
of a 2-button portable remote control operates door locks within a
range of 13 ft. (4 m). Dome light flashes twice when doors are locked
and illuminates for 3 seconds when doors are unlocked. If, after 30
seconds, door(s) have not been opened when unlocked with keyless entry\
system, doors will relock.
COMPONENT LOCATIONS
COMPONENT LOCATIONS TABLE \
\
\
\
\
\
Component Location
ETACS-ECU
3000GT ........................ Behind Left Side Of Dash
Data Link Connector (DLC) ....... Under Left Side Of Dash,
Below Steering Column
Door Lock Actuator ...................... Inside Each Door
Door Lock Relay
Montero ....................... Behind Left Side Of Dash
3000GT
No. 1 ........................ Under Left Side Of Dash
No. 2 ................. Behind Left Rear Quarter Panel
Power Door Lock Control Unit
Montero
W/O RKE .................... Behind Left Side Of Dash,
Behind Speaker
Receiver
3000GT ................. Behind Right Rear Quarter Panel
Remote Keyless Entry (RKE)
Control Unit
Montero ............... Behind Right Rear Quarter Panel
3000GT ................. Behind Left Rear Quarter Panel
\
\
\
\
\
\
HO2S detects oxygen content in exhaust gas and sends this
information to PCM. PCM uses input signals from HO2S to vary duration
of fuel injection. HO2S heater stabilizes sensor temperature
regardless of exhaust gas temperature to allow for more accurate
exhaust oxygen content readings.
Idle Air Control (IAC) Valve Position Sensor
Sensor is incorporated in IAC motor. Sensor senses IAC motor
plunger position and sends electrical signal to PCM.
Ignition Timing Adjustment Terminal
Used for adjusting base ignition timing. When terminal is
grounded, PCM timing control function is by-passed, allowing base
timing to be adjusted.
Intake Air Temperature (IAT) Sensor
IAT sensor is incorporated into airflow sensor assembly. This
resistor-based sensor measures temperature of incoming air and
supplies air density information to PCM.
Knock Sensor (KS)
KS is located in cylinder block and senses engine vibration
during detonation (knock). KS converts vibration into electrical
signal. PCM retards ignition timing based on this signal.
Manifold Differential Pressure (MDP) Sensor
MDP sensor converts negative air pressure in intake manifold
plenum into voltage signals sent to PCM. PCM monitors Exhaust Gas
Recirculation (EGR) system using these signals.
Park/Neutral Position (PNP) Switch (Automatic Transmission)
PNP switch senses position of transmission select lever,
indicating engine load due to automatic transmission engagement. Based
on this signal, PCM commands IAC motor to increase throttle angle,
maintaining optimum idle speed.
Power Steering Oil Pressure Switch
Switch detects increase in power steering oil pressure. When
power steering oil pressure increases, switch contacts close,
signaling PCM. PCM commands IAC motor, raising idle speed to
compensate for drop in engine RPM due to power steering load.
Throttle Position (TP) Sensor
TP sensor is a variable resistor mounted on throttle body.
PCM uses voltage signal from TP sensor to determine throttle plate
angle.
Vehicle Speed Sensor (VSS)
Mounted on transaxle/transmission, VSS sends a pulsing signal
to PCM for vehicle speed calculation. PCM uses this calculation for
cruise control and fuel cut-off.
Volume Airflow (VAF) Sensor
Incorporated into airflow sensor assembly, VAF sensor
measures intake airflow rate. Intake air flows through tunnel in
airflow sensor assembly. VAF sensor sends frequency signal to PCM. PCM
uses signal to adjust fuel injection rate.
OUTPUT SIGNALS
NOTE: Vehicles are equipped with various combinations of
computer-controlled components. Not all components listed
below are used on every vehicle. To determine component
pressure regulator diaphragm opens relief valve, allowing pressure to
bleed off through fuel return line, reducing fuel pressure.
As engine manifold vacuum decreases (open throttle), fuel
pressure regulator diaphragm closes valve, preventing pressure from
bleeding off through fuel return line, increasing fuel pressure.
FUEL CONTROL
Fuel Injectors
Fuel is supplied to engine through electronically pulsed
(timed) injector valves located on fuel rail(s). PCM controls amount\
of fuel metered through injectors based on information received from
sensors.
IDLE SPEED
Air Conditioning (A/C) Relay
When A/C is turned on with engine at idle, PCM signals IAC
motor to increase idle speed. To prevent A/C compressor from switching
on before idle speed has increased, PCM momentarily opens A/C relay
circuit.
Idle Air Control (IAC) Motor
Motor controls pintle-type air valve to regulate volume of
intake air at idle.
During start mode, PCM controls idle intake air volume
according to Engine Coolant Temperature (ECT) sensor input. After
starting, with idle position switch activated (throttle closed), fast
idle speed is controlled by IAC motor and fast idle air control valve
(if equipped).
When idle switch is deactivated (throttle open), IAC motor
moves to a preset position in accordance with ECT sensor input.
PCM signals IAC motor to increase engine RPM in the following
situations: A/T (if applicable) is shifted from Neutral to Drive, A/C
is turned on, or power steering pressure reaches a preset value.
IGNITION SYSTEMS
DIRECT IGNITION SYSTEM (DIS)
Depending on number of cylinders, ignition system is a 2 or
3-coil, distributorless ignition system. On Eclipse (Turbo) and DOHC
V6 engines, Camshaft Position (CMP) sensor is located beside camshaft,\
in front of engine. On all other engines equipped with DIS, CMP sensor
is a separate unit mounted in place of distributor. On DOHC 4-
cylinder, DOHC V6 and 1.8L 4-cylinder engines with California
emissions, Crankshaft Position (CKP) sensor is located beside
crankshaft, in front of engine. PCM determines TDC based on pulse
signals received from sensors and then controls MFI and ignition
timing.
Power Transistors & Ignition Coils
Based on crankshaft position and CMP sensor inputs, PCM
controls timing and directly activates each power transistor to fire
coils. On 4-cylinder engines, power transistor "A" controls primary
current of ignition coil "A" to fire spark plugs on cylinders No. 1
and No. 4 at the same time. Power transistor "B" controls primary
current of ignition coil "B" to fire spark plugs on cylinders No. 2
and No. 3 at the same time. On V6 engines, companion cylinders No. 1
and 4, 2 and 5, and 3 and 6 are fired together.
On all models, although each coil fires 2 plugs at the same
time, ignition takes place in only one cylinder, since the other
Headlight Relay In engine compartment
relay box.
Headlight Washer Relay On bracket, behind left side
of dash.
Horn Relay Left front of engine
compartment.
Ignition Key Hole Illumination Light
Timer Behind center console.
Intermittent Wiper Relay (Rear Wiper) In passenger compartment
relay box.
Intermittent Wiper Relay (Windshield
Wiper) Built-in to steering column
switch.
Power Window Relay In passenger compartment
relay box.
Starter Relay Behind center console.
Center Differential Lock Operation
Detection Switch On transfer case.
Dual Pressure Switch On high pressure line, on
receiver-drier.
Engine Coolant Temperature Switch Top right front of engine.
Free Wheel Engage Switch Right side of engine
compartment.
High Range/Low Range Detection Switch On transfer case.
Low Range Operation Detection Switch On transfer case.
Oil Pressure Switch Lower left front of engine.
Parking Brake Switch At base of parking brake
lever.
Power Steering Pressure Switch On power steering pump.
Rear Differential Lock Detection
Switch Under rear of vehicle, on
differential.
Reed Switch Integral with speedometer.
Seat Belt Switch On driver-side seat belt
buckle.
Stoplight Switch On bracket, above brake pedal.
2WD/4WD Detection Switch On transfer case.
4WD Operation Detection Switch On transfer case.
\
\
\
\
\
\
\
MISCELLANEOUS
\
\
\
\
\
\
\
Component Component Location \
\
\
\
\
\
\
Amplifier Under center console, below
floor.
Data Link Connector (DLC) Behind left side of dash,
near relay box.
FUEL TANKS
GAS CAPS
GASKETS
GROMMETS (VALVE COVER)
HARMONIC DAMPERS
HEATER CONTROL VALVES
HEATER CORES
HOSE AND TUBE COUPLERS, CONNECTORS AND CLAMPS
HOSE CLAMPS
HOSE CONNECTORS
HOSE COUPLERS
HOSES AND TUBES (FUEL LINES, RADIATOR, VACUUM, BY PASS,
HEATER, RECOVERY TANK AND OIL COOLERS)
HOUSINGS
IDLE AIR CONTROLS
IDLE SPEED CONTROL ACTUATORS
IGNITION BOOTS
IGNITION COIL TOWERS
IGNITION COILS
IGNITION CONTROL MODULES (ICM)
IGNITION SWITCHES
IGNITION TERMINALS
IGNITION WIRES, BOOTS, COIL TOWERS AND TERMINALS (SECONDARY)
IN-TANK FUEL STRAINERS
INERTIA FUEL SHUT-OFF SWITCHES
INTAKE AIR TEMPERATURE SENSORS
INTAKE MANIFOLDS
INTERCOOLERS
KNOCK SENSORS
LIQUID VAPOR SEPARATORS
MANIFOLD ABSOLUTE PRESSURE (MAP) SENSORS
MASS AIR FLOW (MAF) SENSORS
METAL AIR MANIFOLDS AND PIPES
METAL AIR PIPES
MIX CONTROL SOLENOIDS
MOTOR MOUNTS
O-RINGS, GASKETS, SEALS AND SPRING LOCKS
O2 SENSORS
OIL PRESSURE SENDING UNITS
OIL PUMP PICK-UP SCREENS
OIL PUMPS
PARK NEUTRAL POSITION SWITCHES
PCV BREATHER ELEMENTS
PCV ORIFICES
PCV VALVES
PICK-UP ASSEMBLIES (INCLUDES MAGNETIC, HALL EFFECT AND
OPTICAL)
POWER STEERING PRESSURE SENSORS
POWERTRAIN CONTROL MODULES (PCM) AND PROM
POWERTRAIN CONTROL PROM
PRESSURIZED EXPANSION TANK CAPS
RADIATOR CAPS AND PRESSURIZED EXPANSION TANK CAPS
RADIATOR FAN BLADES
RADIATOR FAN CLUTCHES
RADIATORS
ROLL OVER VALVES
SEALING COMPOUNDS
SEALS
SECONDARY AIR INJECTION SYSTEM MANAGEMENT DEVICES
SENSORS AND ACTUATORS
SHROUDS, BAFFLES AND DEFLECTORS
SPARK PLUGS
SPRING LOCKS
Terminal broken ......... A .. Require repair or replacement.
Terminal burned, affecting
performance ............ A ........... (1) Require repair or
replacement.
Terminal burned, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal corroded,
affecting performance .. A .. Require repair or replacement.
Terminal corroded, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal loose, affecting
performance ............ B .. Require repair or replacement.
Terminal loose, not
affecting performance .. 1 .. Suggest repair or replacement.
Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
( 1) - Determine cause and correct prior to repair or
replacement of part.
( 2) - Inoperative includes intermittent operation or out of
OEM specification. Refer to OEM recommended service'
procedures.
\
\
\
\
\
\
\
POWER STEERING PRESSURE SENSORS
POWER STEERING PRESSURE SENSOR INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware
threads damaged ........ A ... Require repair or replacement
of hardware.
Attaching hardware
threads stripped
(threads missing) ...... A ... Require repair or replacement
of hardware.
Connector broken ........ A .. Require repair or replacement.
Connector (Weatherpack
type) leaking .......... A .. Require repair or replacement.
Connector melted ........ A ........... ( 1) Require repair or
replacement.
Connector missing ....... C ............ Require replacement.
Contaminated ............ A ........... ( 2) Require repair or
replacement.
Inoperative ............. B ........... ( 3) Require repair or
replacement. Further
inspection required.
Leaking ................. A .. Require repair or replacement.
Missing ................. C ............ Require replacement.
Resistance out of
specification .......... B .. Require repair or replacement.
Restricted, affecting
performance ............ A .. Require repair or replacement.
Terminal broken ......... A .. Require repair or replacement.
Terminal burned, affecting
performance ............ A ........... ( 1) Require repair or