mxm^^^?
Electrics
Airbag System
Airbag DM Fault Code 14
Primary crash sensor circuit short to ground
Airbag DM Fault Code 21
Safing sensor insecure mounting.
Normal Operation
The diagnostic module measuresthevoltage at pins
1
-2 and
1
-6. The normal voltage at these pins is 10
volts (±1 volt) with the ignition on, and battery
voltage with the ignition off.
If the voltage at the airbag diagnostic module
connector pins
1
-2 or
1
-6 drops below 5 volts, fault
code 14 will be generated and the airbag warning
lamp will be switched on. When generating a code
14 the diagnostic module also generates a signal to
blow its own internal thermal fuse. This action
disables the airbag deployment circuit. The airbag
diagnostic module fuse is non-repairable and the
module must be replaced after removing the short
circuit. If the voltage at pins 1-2 and 1-6 returns to
normal,
fault code 51 (blown thermal fuse) will be
logged.
Fault Analysis
WARNING: Read and adhere to all warnings and
safety procedures at the start of
this
section when
working on the airbag system.
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4)
2.
Disconnect the airbag diagnostic module and
remove the plastic wedge from plug
1
(slate).
Note:
The
plastic wedge contains a shorting bar which
would
short
together pins
1-3
(gnd),
1-11
and 1-2 when
the plug is disconnected.
3 Measure the continuity to ground at the following
pins on the diagnostic module harness connector:
1-2 RH crash sensor monitor
1-11 LH crash sensor feed
1
-6 LH crash sensor monitor
1-12 RH crash sensor feed
If no short circuit is detected, go to step 4.
If a short circuit
is
detected, disconnect the relevant
crash sensorandrepeatthecontinuity measurement
to isolate the circuit fault. Service the wiring or
replace the crash sensor as necessary. Refit the
plastic wedge to the diagnostic module connector.
Fit a new airbag diagnostic module and rearm the
airbags (6.4.21.4).
Normal Operation
The diagnostic module measures the resistance
between pins
1
-10 (safing sensor case ground) and
1-3 (monitor reference ground) at the diagnostic
module connector. If the resistance is greater than
2Q
a
fault code
21
will be generated and the airbag
warning lamp will be switched on.
Note:
a
good ground connection is vital.
The
wire from
pin
1-1
is riveted to the safing
sensor case
and the
case
must
be securely
grounded to the vehicle
body.
Fault Analysis
WARNING: Read and adhere to all warnings and
safety procedures at the start of this section when
working on the airbag system.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
Disconnect the diagnostic connector and check for
continuity from pin 1-3 to chassis ground.
If continuity is good, go to step 3.
If the resistance reading is 2Q or more, service the
diagnostic module ground circuit to pin 1-3 as
necessary. Confirm a good ground path between
pins 1-10 and 1-3.Clearthecode21 and rearm the
airbags (6.4.21.4).
Check for continuity between pins
1
-10 and chassis
ground at the safing sensor.
If the resistance is above 2Q, check for continuity
from the safing sensor connector pin 5 to chassis
ground.
Also check the safing sensor mounting for
corrosion,
dirt or loose fixings. Service the wiring
and/or clean and secure the sensor mounting as
necessary, if a satisfactory ground is not achieved,
replace the safing sensor.
Make
a
final continuity test from diagnostic module
connector pin
1
-3 to
1
-10 to ensure a satisfactory
ground
path.
Reconnect the diagnostic module.
Clear the code
21.
Rearm the airbags (6.4.21.4).
September 1996 6-87
Electrics
Airbag System [D:B3-2?
Airbag DM Fault Code 22
Safing sensor output circuit shorted to battery
voltage.
Normal Operation
The diagnostic module measures the voltage at pin
2-5 (airbag module feed) and 2-5 (safing sensor
output monitor) at thediagnosticmoduleconnector.
The voltage at these pins is dependant on charging
system voltage as shown in the table below. If the
voltage at either pin exceeds 5 volts,
a
fault code 22
will be generated.
in 2-5
2.3V
2.4V
2.5V
2.7V
2.8V
3.0V
3.1V
3.2V
3.4 V
3.5V
3.7V
3.8V
4.0V
4.1V
4.3V
Pin 2-6
2.3V
2.4V
2.5V
2.7V
2.8V
3.0V
3.1V
3.2 V
3.4 V
3.5V
3.7V
3.8V
4.0V
4.1V
4.3V
Charge Volts
9.0V
9.5V
10.0V
10.5V
11.0V
11.5V
12.0V
12.5V
13.0V
13.5V
14.0V
14.5V
15.0V
15.5V
16.0V
Possible Causes
• A short between pins 2-5 or 2-6 and another
wire.
(The wiring to the safing sensor carries
voltages above 5 volts).
• A short between the cable reel cassette circuit
and other 12 volt circu its at the steering column
head.
• A short across the normal ly open contacts of the
safmg sensor.
• Vehiclechargingsystem voltage too
high.
If the
generator output is greater than 17V, fault code
22 may be logged.
Fault Analysis
WARNING: Read and adhere to all warnings and
safety procedures at the start of this section when
working on the airbag system.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
Check the voltage at the battery with the engine
running at approximately 1500 rpm.
If the voltage is 14.8 ±0.5 volts, the charging
voltage is within specification, go to step 3.
If the voltage is significantly above 14.8 volts (the
voltage regulator set point) service the charging
system.
Clear the code 22. Rearm the airbags
(6.4.21.4)
Check in the area of the diagnostic module
connector for harness damage which could cause
a short circu it to 12 volts. (Note: The airbag system
harness runs are sheathed in black plastic protection
and harness damage is unlikely.)
If no harness damage is evident, go to step 4.
If harness damage is identified, service the wiring as
necessary. Clear the code 22. Rearm the airbags
(6.4.21.4).
Switch on the ignition. Monitor the voltage at pins
2-5 and 2-6 whilst rotatingthe steering from lock to
lock in both directions.
If the voltage at both pins remains below 5.0 volts,
go to step 5.
If the voltage rises to above 5.0 volts, service the
cable reel cassette or wiring as necessary. Clear the
code 22. Rearm the airbags (6.4.21.4).
With the ignition on, check the voltage at pins 2-5
and 2-6 whilst manipulating the bulkhead and
safing sensor harnesses.
If the voltage rises above 5.0 volts, service the
wiring fault in the harness area being manipulated
at the time the voltage rise occurred.
If no voltage rise occurs, fit a new safing sensor as
the most likely cause of the code 22. Clear the code
22 and rearm the airbags (6.4.21.4).
6-88 September 1996
>^ '—-y ^ Electrics
-^ ^ ^ Airbag System
Airbag DM Fault Code 23
Safing sensor input- battery feed/return open circuit.
Normal Operation
The diagnostic module measures the voltage on
diagnostic module pin
1
-9 at all times. The voltage
can be as high as 25 volts when the backup power
supply is fully charged.
Pin
1
-9 is connected to pin 2-11 inside the safing
sensor and the voltage on both these pins shou
Id
be
the same. If the voltage on pin 2-11 fails below the
voltage on pin
1
-9, a code 23 is generated.
Possible Causes
• Open circuit in the wiring to diagnostic module
pin 1-9.
• Open circuit in the wiring to diagnostic module
pin2-n.
Fault Analysis
WARNING: Read and adhere to all
warnings
and
safety procedures at the start of
this
section when
working on the airbag
system.
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
2.
Disconnect the diagnostic connector and thesafing
sensor connector. Check for continuity from DM
pi n 1
-9 to safing sensor harness connector
pi n
7 and
from DMpin 1-11 to
safing
sensor harness connector
pin 6.
If the continuity of both leads is good, go to step 3.
If a continuity fault is detected, repair the wiring as
necessary. Reconnect ail components. Clear the
code 23. Rearm the airbags (6.4.21.4).
3. Check the continuity between pins 6 and 7 of the
safing sensor.
If the continuity is good, replace the diagnostic
module. Rearm the airbags (6.4.21.4).
If a continuity fault is detected, replace the safing
sensor. Reset the code 23. Rearm the airbags
(6.4.21.4).
September 1996 6-89
Electrics
Airbag System =2?
Airbag DM Fault Code 24
Safing sensor output - battery feed/return open
circuit.
Normal Operation
The diagnostic module measures the voltage on
diagnostic module pins 2-5 and 2-6 the voltage
varies with the vehicle charge level
as
shown in the
table below:
in 2-5
2.3V
2.4 V
2.5V
2.7V
2.8V
3.0V
3.1V
3.2V
3.4V
3.5V
3.7V
3.8V
4.0V
4.1V
4.3V
Pin 2-6
2.3V
2.4V
2.5V
2.7V
2.8V
3.0V
3.1V
3.2V
3.4V
3.5V
3.7V
3.8V
4.0V
4.1V
4.3V
Cliarge Volts
9.0V
9.5V
10.0V
10.5V
11.0V
11.5V
12.0V
12.5V
13.0V
13.5V
14.0V
14.5V
15.0V
15.5V
16.0V
The diagnostic module also measures the voltage at
pin 1-7 (battery input). Using the battery input
voltage, the system can predict the expected voltage
level on pins 2-5 and 2-6. If the voltage on pins 2-
5 or 2-6 is higher or lower than expected, a fault
code 24 will be declared.
Possible Causes
• Open circuit or high resistance in the wiring
harness or safing sensor.
• Intermittent battery voltage on pin 1-7
• The resistance of the pin 2-5 to 2-6 circuit to
ground.
This circuit should be open to ground at
all times.
Fault Analysis
WARNING: Read and adhere to all warnings and
safety procedures at the start of
this
section when
working on the airbag system.
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
2.
Probe the battery input voltage terminal
1
-7. Start
the engine and monitor the charge voltage level
using a digital multimeter. Run the engine at idle
speed and look for any instability in the voltage
level.
Run the engine at a constant medium speed
and then at a constant high speed and repeat the
observation for voltage instability.
If the voltage levels are stable, go to step 3.
If instability of the voltage level is observed,
Investigate and rectify the problem in the charging
circuit.
3. Switch off the ignition. Disconnect the diagnostic
module and check for OQ continuity from pins 2-5
to 2-6.
If no resistance is detected, go to step 4.
If any resistance is detected between pins 2-5 and
2-6,
service the wiring or safing sensor to achieve
Ofi continuity.
4.
Measure the resistance to ground from pins 2-5 and
2-6.
If no short circuit is detected, replace the diagnostic
monitor. Rearm the airbags (6.4.21.4).
If
a
short to grou
nd
is detected, service the wiring or
safing sensor as necessary. Rearm the airbags
(6.4.21.4).
6-90 September 1996
o; D^?
Electrics
Airbag System
Airbag DM Fault Code 32
Drivers airbagcircuit high resistance or open circuit.
Normal Operation
The diagnostic module measures the resistance
across pins 2-4 and 2-5 every time the ignition is
switched on. The resistance should be 1.6 to
1.8£2.
This value is made up of the airbag
1
.OQ and the
cable reel cassette windings 0.3-0.4Q per winding.
If the total resistance in the drivers airbag circuit
exceeds 4.0^, fault code 32 will be declared and
the airbag lamp will be illuminated.
Note: The
resistance
of
the airbag simulator is
2.5Q,
therefore expect total resistance readings
of 2.8 - 2.9Q
with
the simulator
fitted.
Caution: The drivers airbag and the cable reel
cassette connectors contains shorting bars which
short circuit pins 1 and 3 of the connectors when
disconnected.
DO NOT REMOVE THE AIRBAG SHORTING
BAR
UNDER ANY CIRCUMSTANCES.
The harness shorting bars may be temporarily
removed during the following resistance checks.
Possible Causes
• Excessive resistance in the cable reel cassette
connections.
• Open circuitor high resistance in the cable reel
cassette windings.
• Open circuit or high resistance in the wiring
harness
• Open circuit or high resistance in the drivers
airbag module.
• Defective diagnostic module.
WARNING: Do not attempt a direct resistance
check on the airbag module. Accidental
deployment can occur due to the induced voltage
from the measuring equipment.
3.
Fault Analysis
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
Disconnect the diagnostic module and remove the
plastic wedge from connector 2 (black). Measure
the resistance between pins 2-4 and 2-5. The
resistance should be 2.8 - 2.9Q.
If the resistance is 2.8 - 2.9Q, go to step 3.
if the resistance is not in the range 2.8 - 2.9D, isolate
the continuity problem noting the following:
a) Pin 2-4 is shorted to pin 2-5 by a shorting link
. when plug 2 of the diagnostic connector is
removed.
Removal of the plastic wedge from
the plug will remove the short circuit.
b) Both halves of the cable reel conneaor have
shorting links which will short pin 1 to pin 3
when the connection is removed. Removal of
the plastic wedge horn either half will remove
the short circuit in that part of the wiring.
c) A shorting link is fitted in the airbag module
connector. Do not attempt to remove this
shorting link or the plastic wedge. Do not
attempt to measure the resistance of the airbag
module.
d) Carefully replace all plastic wedges on
completion of the circuit checks.
The fault is therefore in either the airbag module or
in the airbag diagnostic module.
Substitute a known good diagnostic module. If
code 32 recurs with the airbag simulator fitted,
there is a fault in the wiring.
If the fau
It
code 32 does not recur, rearm the airbags
(6.4.21.4) and retest.
If fau
It
code 32 recu
rs
with the ai rbag modu
le
fitted,
the airbag module is faulty. Replace the drivers
airbag module (4.5.01.3).
September 1996 6-91
Electrics
Airbag System ^^2?
Airbag DM Fault Code 33
Passengers airbag circuit high resistance or open
circuit.
Normal Operation
The diagnostic module measures the resistance
across pins 2-2 and 2-3 every time the ignition is
switched on. The resistance should be 0.9 to 1.1Q.
If the total resistance in the passengers airbag
circuit exceeds 4.0Q, fault code 33 will be declared
and the airbag lamp will be illuminated.
Note:
The
nominal
resistance
of the airbag simulator
is
2.5£2,
therefore
expect
a
total circuitresistancereadingof
2.4 - 2.6Q with the simulator
fitted.
Caution: The passenger airbag connector contains
shorting bars which short circuit pins 1 and 3 of
both sides of the connector when disconnected.
DO NOT REMOVE THE AIRBAG SHORTING
BAR
UNDER ANY CIRCUMSTANCES.
The harness shorting bar may be temporarily
removed during the following resistance checks.
Possible Causes
• Open circuit or high resistance in the wiring
harness
• Open circuit or high resistance in the passenger
airbag module.
• Defective diagnostic module
WARNING: Do not attempt a direct resistance
check on the airbag module. Accidental
deployment can occur due to the induced voltage
from the measuring equipment.
Fault Analysis
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
2.
Disconnectthediagnostic module and remove the
plastic wedge from connector 2 (black). Measure
the resistance between pins 2-2 and 2-3. The
resistance should be 2.4 - 2.6Q.
if the resistance is 2.4 - 2.6Q, go to step 3.
Ifthe resistance is not in the range 2.4-2.6S2, isolate
the continuity problem noting the following:
a) In the diagnostic module connector, pin 2-2 is
shorted to pin 2-3 by a shorting link when plug
2 of the diagnostic connector is removed.
Removal of the plastic wedge from the plug wi
11
remove this short circuit.
b) At the airbag module harness connector, pin 1
is shorted to pin 3 when the airbag is
disconnected. Removal of the plastic wedge
from the plug will remove this short circuit.
c) The shorting link fitted in the airbag module
connector will short pin 1 to pin 3 when the
airbag is disconnected. Do not attempt to
remove
this
shorting link or the plastic wedge.
Do not attempt
to
measure the resistance of the
airbag module.
c) Carefully replace all plastic wedges on
completion of the circuit checks.
3. The fault is therefore in either the airbag module or
in the airbag diagnostic module.
Substitute a known good diagnostic module. If
code 33 recurs with the airbag simulator fitted,
there is still a fault in the wiring or the simulator.
Ifthe fault code 33 does not recur, rearm the airbags
(6.4.21.4) and retest.
If fault code 33 recurs with the airbag module fitted,
the airbag module is faulty. Replace the passengers
airbag module (7.8.02.6).
6-92 September 1996
Electrics
Airbag System
Airbag DM Fault Code 41
Right hand crash sensor feed or return open circuit.
Airbag DM Fault Code 42
Left hand crash sensor feed or return open circuit.
Normal Operation
The diagnostic module constantly measures the
voltage at pins
1
-2 and
1-11.
The voltage should be
10±1 volt. The two wires are connected together
within the right hand crash sensor. If the voltage at
1-2 falls below that at 1-11, an open circuit has
occurred.
Fault code 41 will be declared and the
airbag lamp will be illuminated.
Normal Operation
The diagnostic module constantly measures the
voltage at pins
1
-6 and
1
-12.
The voltage should be
10±1 volt. The two wires are connected together
within the left hand crash sensor. If the voltage at
1
-
5 falls below that at 1-12, an open circuit has
occurred.
Fault code 42 will be declared and the
airbag lamp will be illuminated.
Possible Causes
• Open circuit in the wires from diagnostic module
pins
1
-2 or
1 -11
to the right hand crash sensor.
• An open circuit within the right hand crash
sensor across pins 1 and 2 of the sensor
connector.
Fault Analysis
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
2.
Disconnect the diagnostic module and check
continuity between pins 1-2 and 1-11.
If the resistance is significantly greater than OQ, go
to step 3.
If the circu it resistance
is
OQ.,
the
fau It
is intermittent.
Manipulate the harness, particularly in the area of
the sensor connector and the crash sensor harness
to bulkhead harness connector, to identify the
location of the open circuit. Service the circuit as
necessary.
3. Check the right hand crash sensor connector for
security and service the connector if necessary.
If the connector is secure, disconnect and check
continuity from pin 1 to pin 2 of the sensor.
If the resistance is
h igh
or
an
open circuit
is
detected,
replace the crash sensor.
If the sensor continuity is good (0^2), service the
crash sensor loom or bu Ikhead harness
as
necessary
to remove the high resistance or open circuit.
4.
With the airbag simulators in circuit and all
connectors in place, clear the code
41.
Switch off
and then on again to check that the airbag warning
lamp comes on at 'ignition on' and extinguishes
after approximately six seconds.
5. Switch off and rearm the airbags (6.4.21.4)
3.
Possible Causes
• Opencircuitinthewiresfromdiagnosticmodule
pins
1
-6 or
1
-12 to the left hand crash sensor.
• An open circuit within the left hand crash sensor
across pins 1 and 2 of the sensor connector.
Fault Analysis
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
Disconnect the diagnostic module and check
continuity between pins 1-6 and 1-12.
If the resistance is significantly greater than OQ, go
to step 3.
If the circu it resistance
isO£2,
the fault is intermittent.
Manipulate the harness, particularly in the area of
the sensor connector and the crash sensor harness
to bulkhead harness connector, to identify the
location of the open circuit. Service the circuit as
necessary.
Check the left hand crash sensor connector for
security and service the connector if necessary.
If the connector is secure, disconnect and check
continuity from pin 1 to pin 2 of the sensor.
If the resistance is high or
an
open circuit is
detected,
replace the crash sensor.
If the sensor continuity is good (OQ), service the
crash sensor harness or bulkhead harness as
necessary to remove the high resistance or open
circuit.
With the airbag simulators in circuit and all
connectors in place, clear the code 42. Switch off
and then on again to check that the airbag warning
lamp comes on at 'ignition on' and extinguishes
after approximately six seconds.
Switch off and rearm the airbags (6.4.21.4).
September 1996 6-95
Electrics
Airbag System o
--i.
D^?
Airbag DM Fault Code 44
Right hand crash sensor incorrectly mounted.
Normal Operation
The diagnostic module constantly measures the
resistance between pins 2-8 (RH crash sensor
ground) and
1
-3 (airbag DM system ground). If the
resistance rises above 2Q, fault code 44 is declared
and the airbag warning lamp is illuminated.
Possible Causes
• Loose sensor mounting or an accumulation of
dirt or corrosion at the sensor mountings.
• An open circuit or loose wire from DM pin 2-8
to the sensor.
• An open circuit wire or loose rivet within the
sensor.
Fault Analysis
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
Disconnect the diagnostic module and check
continuity between pins 1-3 and 2-8.
If the resistance is significantly greater than
OQ,,
go
to step 3.
Ifthe circuit resistance
is
OQ,thefault is intermittent.
Manipulate the harness, particularly in the area of
the sensor connector and the crash sensor harness
to bulkhead harness connector, to identify the
location of the open circuit. Service the circuit as
necessary.
Check the right hand crash sensor mounting for
security and corrosion.
If neither problem is evident, go to step 4.
If either problem is evident, remove, clean and
resecure the sensor. Reconnect the diagnostic
module. Switch on and clear the code 44. Switch
off and then on again to check that the airbag
warning lamp comes on at 'ignition on' and
extinguishes after approximately six seconds.
4.
Check the right hand crash sensor connector for
security and service the connector if necessary.
If the connector is secure, disconnect and check
continuity from pin 1 to pin 2 of the sensor.
Ifthe resistance is high or
an
open circuit isdetected,
replace the crash sensor. Go to step 5
If the sensor continuity is good (OQ), service the
crash sensor harness or bulkhead harness as
necessary to remove the high resistance or open
circuit. Go to step 5.
5. With the airbag simulators in circuit and all
connectors in place, clear the code 44. Switch off
and then on again to check that the airbag warning
lamp comes on at 'ignition on' and extinguishes
after approximately six seconds.
6. Switch off and rearm the airbags (6.4.21.4)
6-96 September 1996