2. ENGINE IGNITION TIMING - Must be set with timing terminal
grounded.
3. ENGINE VACUUM - Must be normal for your altitude.
4. ENGINE VALVE TIMING - To specifications.
5. ENGINE COMPRESSION - To specifications.
6. ENGINE P.C.V. SYSTEM - Must flow freely.
7. ENGINE EXHAUST SYSTEM - Must be free of any restrictions.
8. POWER BRAKE BOOSTER - No internal vacuum leaks.
9. TORQUE CONVERTER CONDITION - May cause very low power at breakaway
or high speed (Only 1 condition at a time).
10. FUEL CONTAMINATION - High alcohol or water content.
11. FUEL INJECTORS - Rough idle may be caused by injector wiring not
connected to correct injector.
12. ENGINE SECONDARY IGNITION CHECK - Abnormal scope patterns.
13. TECHNICAL SERVICE BULLETINS - Any that apply to vehicle.
14. All air intake piping and vacuum hoses must be in place and
secure. The proper air filter element must be used.
15. FUEL PRESSURE - Must be correct.
Specification: With no vacuum at the regulator:
48 PSI on V6 & non-turbo 4 Cyl. engines
36 PSI on turbo engines
NS-1: IGNITION CHECK FLOW CHARTS - 2.0L
Fig. 235: NS-1 Flow Chart & Circuit Diagram (2.0L) (1 of 5)
determined that all of the engine controls systems are operating as
they were designed to. Therefore, they are not the cause of the
driveability problem. The following additional items should be checked
as possible causes:
1) ENGINE VACUUM - Must be at least 13 inches in neutral.
2) ENGINE VALVE TIMING - Set to specifications.
3) ENGINE COMPRESSION - To specifications.
4) EXHAUST SYSTEM - Free from any restrictions.
5) PCV SYSTEM - Must flow freely.
6) DRIVE SPROCKETS - Camshaft and crank shaft.
7) TORQUE CONVERTER STALL SPEED - To specifications.
8) POWER BRAKE BOOSTER - No internal vacuum leak.
9) FUEL CONTAMINATION - High alcohol and water content.
10) FUEL INJECTORS - Rough idle may be caused by injector
control wire not connected to correct injector.
11) TECHNICAL SERVICE BULLETINS - Any that may apply to
vehicle.
12) ENGINE SECONDARY IGNITION CHECK - Any abnormal scope
pattern.
13) TECHNICAL SERVICE BULLETINS - Any that apply to vehicle.
14) All air intake piping and vacuum hoses must be in place
and secure. The proper air filter element must be used.
15) FUEL PRESSURE - Must be correct.
Specification: With no vacuum at the regulator:
48 PSI on V6 & non-turbo 4 Cyl. engines
36 PSI on turbo engines
DR-VER: DRIVEABILITY VERIFICATION TEST - 2.0L
Fig. 300: DR-VER Flow Chart (2.0L)
SUMMARY
\003
H - T E STS W /O C O DES
1991 M it s u bis h i M onte ro
1991 ENGINE PERFORMANCE
Trouble Shooting - No Codes
Chrysler Motors: Colt, Colt 200, Colt Vista, Ram-50, Stealth,
Summit,
Mitsubishi: Eclipse, Galant, Mirage, Montero, Pickup, 3000GT
INTRODUCTION
Before diagnosing symptoms or intermittent faults, perform
steps in F - BASIC TESTING and G - TESTS W/ CODES articles in the
ENGINE PERFORMANCE Section. Use this article to diagnose driveability
problems that exist when a hard fault code is NOT found, or on vehicle
NOT equipped with a self-diagnostic system.
NOTE: Computer control unit has been revised to correct certain
driveability problems. Check with manufacturer for latest
computer application.
Symptom checks are intended to direct technician to
malfunctioning component(s) so further diagnosis may be performed. A
symptom should lead to specific component or system testing, or an
adjustment specification.
Use intermittent test procedures to locate driveability
problems that DO NOT occur when vehicle is being tested. These test
procedures should also be used if a soft (intermittent) trouble code
was present, but no problem was found during self-diagnostic testing.
NOTE: For specific testing procedures, see I - SYS/COMP TESTS
article in the ENGINE PERFORMANCE Section. For
specifications, see C - SPECIFICATIONS or D - ADJUSTMENTS
article in the ENGINE PERFORMANCE Section.
SYMPTOMS
SYMPTOM DIAGNOSIS
Symptom checks cannot be used unless problem occurs while
vehicle is being tested. Symptoms available for diagnosis include the
following:
* Difficult to start/no start (cranks okay)
* Rough or unstable idle
* Engine hesitates or poor acceleration
* Engine surges
* Detonation or knocking
* Poor fuel mileage
SYMPTOMS (PFI)
DIFFICULT TO START/NO START (CRANKS OKAY)
* Check idle speed control servo (if applicable).
* Check stepper motor (if applicable).
* Check ignition switch.
* Check TDC sensor.
* Check crank angle sensor.
* Check inhibitor switch (A/T).
* Check airflow sensor.
* Check coolant temperature sensor.
* Check idle position switch.
* Check power supply to ECU ground.
* Check fuel pressure.
* Check for disconnected or damaged vacuum hoses.
* Check for control relay malfunction.
* Check for PFI system malfunction.
* Check for fuel pump drive control system malfunction.
* Check for ignition coil malfunction.
* Check for ignition timing malfunction.
* Check for power transistor malfunction.
* Check for fuel injector malfunction.
* Check for ECU malfunction.
* Ensure electrical harness, connectors and wires are not
broken or loose.
ROUGH OR UNSTABLE IDLE
* Check intake air temperature sensor.
* Check purge control solenoid valve (if applicable).
* Check vehicle speed sensor.
* Check engine coolant temperature sensor.
* Check barometric pressure sensor.
* Check ignition switch.
* Check idle position switch.
* Check throttle position sensor.
* Check TDC sensor.
* Check crank angle sensor.
* Check power steering oil pressure switch.
* Check A/C switch and power relay (if applicable).
* Check inhibitor switch.
* Check oxygen sensor.
* Check airflow sensor.
* Check motor position sensor (if equipped).
* Check fuel pressure.
* Check for disconnected or damaged vacuum hoses.
* Check PFI system malfunction.
* Check for stepper motor malfunction (if applicable).
* Check for fuel injector malfunction.
* Check for power transistor malfunction.
* Check for vehicle speed switch malfunction.
* Check for ECU malfunction.
* Ensure electrical harness, connectors and wires are not
broken or loose.
ENGINE HESITATES OR POOR ACCELERATION
* Check intake air temperature sensor.
* Check engine coolant temperature sensor.
* Check barometric pressure sensor.
* Check ignition switch.
* Check ignition coil.
* Check EGR control solenoid valve (if applicable).
* Check idle position switch.
* Check throttle position sensor.
* Check TDC sensor.
* Check crank angle sensor.
* Check power steering oil pressure switch.
* Check A/C switch (if applicable).
* Check inhibitor switch (A/T).
* Check oxygen sensor.
* Check airflow sensor.
* Check motor position sensor (if applicable).
* Check fuel pressure.
* Check for disconnected or damaged vacuum hoses.
* Check for PFI system malfunction.
* Check for stepper motor malfunction (if applicable).
* Check for fuel injector malfunction.
* Check for power transistor malfunction.
* Check for A/C power relay control system malfunction (if
applicable).
* Check for ECU malfunction.
* Ensure electrical harness, connectors and wires are not
broken or loose.
ENGINE SURGES
* Check coolant temperature sensor.
* Check idle position switch.
* Check EGR control solenoid valve (if applicable).
* Check fuel pressure.
* Check for fuel injector malfunction.
DETONATION OR KNOCKING
* Check airflow sensor.
* Check for cooling system problems.
* Check fuel quality.
* Check intake air temperature sensor.
* Check barometric pressure sensor.
* Check ignition coil.
* Check power transistor.
* Check for EGR system malfunction.
POOR FUEL MILEAGE
* Check intake air temperature sensor.
* Check engine coolant temperature sensor.
* Check barometric pressure sensor.
* Check ignition switch.
* Check idle position switch.
* Check throttle position sensor.
* Check TDC sensor.
* Check crank angle sensor.
* Check power steering oil pressure switch.
* Check A/C switch (if applicable).
* Check inhibitor switch (A/T).
* Check oxygen sensor.
* Check airflow sensor.
* Check motor position sensor (if applicable).
* Check fuel pressure.
* Check for PFI system malfunction.
* Check for stepper motor malfunction.
* Check for fuel injector malfunction.
* Check for power transistor malfunction.
INTERMITTENTS
INTERMITTENT PROBLEM DIAGNOSIS
Intermittent fault testing requires duplicating circuit or
component failure to identify problem. These procedures may lead to
computer setting a fault code which may help in diagnosis.
If problem vehicle does not produce fault codes, monitor
Inhibitor Switch (Automatic Transmission Only)
Inhibitor switch senses position of transmission select
lever, indicating engine load due to automatic transmission
engagement. Based on this signal, ECU commands ISC motor to increase
throttle angle, maintaining optimum idle speed.
Intake Air Temperature Sensor
Incorporated in airflow sensor assembly, this resistor-based
sensor measures temperature of incoming air and supplies air density
information to ECU.
Motor Position Sensor (MPS)
Incorporated in ISC motor (or separate unit on some models),
senses ISC motor plunger position and sends electrical signal to ECU.
Oxygen (O2) Sensor
Located in exhaust system, generates an output voltage.
Output voltage varies with oxygen content of exhaust gas stream. ECU
adjusts air/fuel mixture based on signals from oxygen sensor.
Power Steering Oil Pressure Switch
Detects increase in power steering oil pressure. When power
steering oil pressure increases, switch contacts close, signalling
ECU. ECU commands ISC motor, raising idle speed to compensate for drop
in engine RPM due to power steering load.
TDC Sensor
See CRANKSHAFT ANGLE & TDC SENSOR ASSEMBLY.
Throttle Position Sensor (TPS)
A variable resistor mounted on throttle body. ECU uses
voltage signal received from TPS to determine throttle plate angle.
Vehicle Speed Sensor
Located in speedometer in instrument cluster, uses a reed
switch to sense speedometer gear revolutions. ECU uses gear
revolutions to determine vehicle speed.
OUTPUT SIGNALS
NOTE: Vehicles are equipped with different combinations of
computer-controlled components. Not all components listed
below are used on every vehicle. For theory and operation on
each output component, refer to the system indicated in
brackets after component.
CHECK ENGINE Light
See SELF DIAGNOSTIC SYSTEM.
EGR Control Solenoid Valve
See EXHAUST GAS RECIRCULATION (EGR) CONTROL under EMISSION
SYSTEMS.
Fuel Injectors
See FUEL CONTROL under FUEL SYSTEM.
Fuel Pressure Control Solenoid Valve (Turbo Only)
See FUEL DELIVERY under FUEL SYSTEM.
Fuel Pressure Regulator
See FUEL DELIVERY under FUEL SYSTEM.
Fuel Pump Relay (MPI Control Relay)
See FUEL DELIVERY under FUEL SYSTEM.
Idle Speed Control Servo
See IDLE SPEED under FUEL SYSTEM.
Power Transistor(s) & Ignition Coils
See IGNITION SYSTEMS.
Purge Control Solenoid Valve
See EVAPORATIVE CONTROL under EMISSION SYSTEMS.
Self-Diagnostic Connector
See SELF-DIAGNOSTIC SYSTEM.
Wastegate Control Solenoid Valve
See TURBOCHARGED ENGINES under AIR INDUCTION SYSTEM.
FUEL SYSTEM
FUEL DELIVERY
Electric fuel pump (located in gas tank) feeds fuel through
in-tank fuel filter, external fuel filter (located in engine
compartment) and fuel injector rail.
Fuel Pump
Consists of an impeller driven by a motor. Pump has an
internal check valve to maintain system pressure and a relief valve to
protect the fuel pressure circuit. Pump receives voltage supply from
Multi-Point Injection (MPI) control relay.
Fuel Pressure Control Solenoid Valve (Turbo Only)
Prevents rough idle due to fuel percolation. On engine
restart, if engine coolant or intake air temperatures reach a preset
value, ECU applies voltage to fuel pressure control solenoid valve for
2 minutes after engine re-start. Valve opens, allowing atmospheric
pressure to be applied to fuel pressure regulator diaphragm. This
allows maximum available fuel pressure at injectors, enriching fuel
mixture and maintaining stable idle at high engine temperatures.
Fuel Pressure Regulator
Located on fuel injector rail, this diaphragm-operated relief
valve adjusts fuel pressure according to engine manifold vacuum.
As engine manifold vacuum increases (closed throttle), fuel
pressure regulator diaphragm opens relief valve, allowing pressure to
bleed off through fuel return line, reducing fuel pressure.
As engine manifold vacuum decreases (open throttle), fuel
pressure regulator diaphragm closes valve, preventing pressure from
bleeding off through fuel return line, increasing fuel pressure.
FUEL CONTROL
Fuel Injectors
Fuel is supplied to engine through electronically pulsed
(timed) injector valves located on fuel rail(s). ECU controls amount\
of fuel metered through injectors based upon information received from
sensors.
IDLE SPEED
Air Conditioner Relay
When A/C is turned on with engine at idle, ECU signals ISC
EMISSION SYSTEMS
EXHAUST GAS RECIRCULATION (EGR) CONTROL
Federal (Non-Turbocharged)
To lower oxides of nitrogen (NOx) exhaust emissions, a non-
computer controlled exhaust gas recirculation system is used. EGR
operation is controlled by throttle body ported vacuum. Vacuum is
routed through thermovalve to prevent EGR operation at low engine
temperatures.
Spring pressure holds EGR valve closed during low vacuum
conditions (engine idling or wide open throttle). When vacuum pressure\
increases and overcomes EGR spring pressure, EGR valve is lifted and
allows exhaust gases to flow into intake manifold for combustion.
California & Turbocharged
ECU controls EGR operation by activating EGR control solenoid
valve according to engine load. When engine is cold, ECU signals EGR
control solenoid valve to deactivate EGR.
California models are equipped with an EGR temperature
sensor. When EGR malfunction occurs, EGR temperature decreases and ECU
illuminates CHECK ENGINE (malfunction indicator) light.
EGR Control Solenoid Valve
Denies or allows vacuum supply to EGR valve, based upon ECU
commands.
Thermovalve
Denies or allows vacuum supply to EGR valve based on coolant
temperature.
EVAPORATIVE CONTROL
Fuel evaporation system prevents fuel vapor from entering
atmosphere. System consists of a special fuel tank with vapor
separator tanks (if equipped), vacuum relief filler cap, overfill
limiter (2-way valve), fuel check valve, thermovalve (if equipped),
charcoal canister, purge control valve, purge control solenoid valve
and connecting lines and hoses.
Purge Control Solenoid Valve
When engine is off, fuel vapors are vented into charcoal
canister. When engine is warmed to normal operating temperature and
running above idle, ECU energizes purge control solenoid valve,
allowing vacuum to purge valve.
Canister vapors are then drawn through purge valve into
intake manifold for burning. Purge control solenoid valve remains
closed during idle and engine warm-up to reduce HC and CO emissions.
HIGH ALTITUDE CONTROL (HAC)
This system compensates for variations in altitude. When
atmospheric (barometric) pressure sensor determines vehicle is above
preset altitude, ECU compensates by adjusting air/fuel mixture and
ignition timing. If HAC system is inoperative, there will be an
increase in emissions.
PCV VALVE
Positive Crankcase Ventilation (PCV) valve operates in the
closed crankcase ventilation system. Closed crankcase ventilation