AML EOBD System Operation Summary
Rory O’Curry Aston Martin Lagonda CONFIDENTIAL 1 May 2009
[email protected] AML EOBD Monitors 07 ROC.doc Page 13 of 43
Differential Pressure Feedback EGR System Monitor
Where a vacuum driven EGR valve is used on the base application, the EGR System Monitor will consist
of a series of electrical and functional tests for the various aspects of system operation. First, the
Differential Pressure Feedback EGR (DPFE) sensor input circuit is checked for out of range values (P1400
P1401). The Electronic Vacuum Regulator (EVR) output circuit is checked for opens and shorts (P1409).
EGR Electrical Check Operation:
DTCs P1400, P1401, P1409
Monitor execution continuous, during EGR monitor
Monitor Sequence none
Monitoring Duration 4 seconds to register a malfunction
Typical EGR electrical check entry conditions:
EGR system enabled
Typical EGR electrical check malfunction thresholds:
DPFE sensor outside voltage: > 4.96 volts, < 0.195 volts
EVR solenoid smart driver status indicates open/short
The differential pressure indicated by the DPFE sensor is also checked at idle with zero requested EGR
flow to perform the high flow check. If the differen tial pressure exceeds a calibratable limit, it indicates a
stuck open EGR valve or debris temporar ily lodged under the EGR valve seat (P0402).
EGR Stuck open Check Operation:
DTCs P0402
Monitor execution once per driving cycle
Monitor Sequence Done after P1400 and P1401 tests
Sensors OK CPS, ECT, IAT, MAF, MAP, TP
Monitoring Duration 10 seconds to register a malfunction
Typical EGR stuck open check entry conditions : Minimum Maximum
EVR Duty Cycle (EGR commanded off) 0% 0%
Engine RPM (after EGR enabled) at idle at idle
Typical EGR stuck open check malfunction thresholds:
DPFE sensor voltage at idle versus engine-off signal: > 0.6 volts
AML EOBD System Operation Summary
Rory O’Curry Aston Martin Lagonda CONFIDENTIAL 1 May 2009
[email protected] AML EOBD Monitors 07 ROC.doc Page 14 of 43
After the vehicle is started, during vehicle acceleration, the differential pressure indicated by the DPFE
sensor at zero EGR flow is checked to ensure that both hoses to the DPFE sensor are connected. Under
this condition, the differential pressure should be zer o. If the differential pressure indicated by the DPFE
sensor exceeds a maximum threshold or falls below a minimum threshold, an upstream or downstream
DPFE hose malfunction is indicated (P1405 P1406).
EGR Hose Check Operation:
DTCs P1405, P1406
Monitor execution once per driving cycle
Monitor Sequence Done after P0402 test
Sensors OK MAF, MAP
Monitoring Duration 2 seconds to register a malfunction
Typical EGR hose check entry conditions : Minimum Maximum
EVR duty Cycle (EGR commanded off) 0% 0%
Mass Air Flow 8 lb/min
Inferred exhaust back pressure 13 in H2O
Typical EGR hose check malfunction thresholds:
DPFE sensor voltage: < -7 in H2O, > 7 in H2O
After the vehicle has warmed up and normal EGR rates are being commanded by the PCM, the low flow
check is performed. Since the EGR system is a closed loop system, the EGR system will deliver the
requested EGR flow as long as it has the capacity to do so. If the EVR duty cycle is very high (greater
than 80% duty cycle), the differential pressure indicated by the DPFE sensor is evaluated to determine the
amount of EGR system restriction. If the differential pr essure is below a calibratable threshold, a low flow
malfunction in indicated (P0401).
EGR Flow Check Operation:
DTCs P0401
Monitor execution once per driving cycle
Monitor Sequence Done after P1405 and P1406 tests
Sensors OK CPS, ECT, IAT, MAF, MAP, TP
Monitoring Duration minimum 70 seconds to register a malfunction
Typical EGR flow check entry conditions: Minimum Maximum
EVR Duty Cycle 80% 100%
Engine RPM 2500 rpm
Mass Air Flow Rate of Change 6% prog. loop
Inferred manifold vacuum 6 in Hg 10 in Hg
Typical EGR flow check malfunction thresholds:
DPFE sensor voltage: < 6 in H2O
EGR Monitor temporary disablement conditions ( other than entry requirements ) :
Non-operational when base feature disabled, including matching base feature temperature disablement.
Low Barometric Pressure Conditions.
Reporting of faults suppressed below 32° F to prevent mis-diagnosis due to ice. Monitor is still operational
and continues to check, reporting any faults when temperature > 32 °F.
AML EOBD System Operation Summary
Rory O’Curry Aston Martin Lagonda CONFIDENTIAL 1 May 2009
[email protected] AML EOBD Monitors 07 ROC.doc Page 16 of 43
Electronic Throttle Monitor
Where ETC is used, the system monitor incorporates a complex safety strategy. The main ETC feature is
based around a driver demand torque that is deliver ed as an output shaft torque through the correct
positioning of the throttle plate. The Independent Plausibility Check (IPC) feature performs the primary
monitoring function. This resides within the main microprocessor and is responsible for determining the
driver demand torque and comparing it to an estimate of the actual brake torque delivered. If the generated
torque exceeds the driver demanded torque by a speci fied amount, then the appropriate FMEM action is
taken.
With the IPC feature being on the main processor, an intelligent VQZ watchdog is incorporated on a
separate processor to monitor the performance of the IPC and the main processor. If the VQZ determines
that the IPC function is impaired in any way then it takes the appropriate FMEM action.
Electronic Throttle:
DTCs P0606 PCM Microprocessor fault (MIL)
P2110 Forced limit RPM mode (MIL) (Default throttle, if this is the only
code set then it implies that the IPC detected a power greater then demand
occurrence)
Monitor execution continuous
Monitor Sequence none
Monitoring Duration Less than 200ms to register a fault
The Throttle Plate Position Controller (TPPC) controls the throttle plate to the desired throttle angle. It is
embedded within a separate chip within the PCM. The output of the TPPC is a voltage signal to the H-
bridge driver.
Throttle Plate Position Controller:
DTCs P2100 Throttle actuator control motor circuit open (MIL)
P2101 Throttle actuator control motor circuit range/performance (MIL)
(ETB mis-wired, detected at start-up only)
P2107 Throttle actuator control motor processor (MIL) (TP_CMD or H-
Bridge or TPPC self test fault)
P2111 Throttle actuator control system – stuck open (MIL)
P2112 Throttle actuator control system – stuck closed (MIL)
Monitor execution continuous
Monitor Sequence none
Monitoring Duration Less than 1s to register a fault
AML EOBD System Operation Summary
Rory O’Curry Aston Martin Lagonda CONFIDENTIAL 1 May 2009
[email protected] AML EOBD Monitors 07 ROC.doc Page 17 of 43
The system monitor also determines the validity of an y inputs to the electronic throttle control feature by
checking for opens, shorts, out-of-range values and inconsistencies.
Throttle Position Sensors:
DTCs P0121 Throttle position sensor A circ uit range/performance (Closed in bore
out of range fault)
P0122 Throttle position sensor A circuit low input
P0123 Throttle position sensor A circuit high input
P0124 Throttle position sensor A circuit intermittent
P0221 Throttle position sensor B circuit range/performance (Closed in bore
out of range fault)
P0222 Throttle position sensor B circuit low input
P0223 Throttle position sensor B circuit high input
P0224 Throttle position sensor B circuit intermittent
P2135 Throttle position sensor A/B voltage correlation
Monitor execution continuous
Monitor Sequence none
Monitoring Duration Less than 200ms to register a fault
Accelerator Pedal Position Sensors:
DTCs P2121 Pedal position sensor D circuit range/performance
P2122 Pedal position sensor D circuit low input
P2123 Pedal position sensor D circuit high input
P2124 Pedal position sensor D circuit intermittent
P2126 Pedal position sensor E circuit range/performance
P2127 Pedal position sensor E circuit low input
P2128 Pedal position sensor E circuit high input
P2129 Pedal position sensor E circuit intermittent
P2138 Pedal position sensor D/E voltage correlation
Monitor execution continuous
Monitor Sequence none
Monitoring Duration Less than 200ms to register a fault
Brake Pedal Switches:
DTCs P0504 Brake switch A/B correlation (BPS on when BLS is off)
P0571 Brake switch A circuit (BPS failed)
P0703 Brake switch B circuit (BLS failed)
P1572 Brake system input failure (BLS failed then BPS failed)
P1703 Brake switch out of self test range (Set when brake is on for KOEO
test or when brake on or off state is not seen for KOER test)
Monitor execution continuous
Monitor Sequence none
Monitoring Duration Not time dependent
AML EOBD System Operation Summary
Rory O’Curry Aston Martin Lagonda CONFIDENTIAL 1 May 2009
[email protected] AML EOBD Monitors 07 ROC.doc Page 21 of 43
Dual MAF Diagnostic Operation:
DTCs P0100 – Mass Air Flow A Circuit
P0101 – Mass Air Flow A Circuit Range/Performance
P0102 – Mass Air Flow A Circuit Low Input
P0103 – Mass Air Flow A Circuit High Input
P0104 – Mass Air Flow A Circuit Intermittent/Erratic
P010A – Mass Air Flow B Circuit
P010B – Mass Air Flow B Circuit Range/Performance
P010C – Mass Air Flow B Circuit Low Input
P010D – Mass Air Flow B Circuit High Input
P010E – Mass Air Flow B Circuit Intermittent/Erratic
P010F – Mass Air Flow Sensors A/B Correlation
Monitor execution Continuous (exceptions below)
Monitor Sequence Continuous (exceptions below)
Sensors/Components OK No Throttle Position Failure
No Vehicle Speed Failure
Monitoring Duration Continuous (exceptions below)
Global Entry Conditions
Entry condition Minimum Maximum
Battery Voltage 11 volts 18 volt
Global Abort Conditions
SAIR monitor running
Abort Conditions for P0100,P0101,P010A,P010B,P010F
Throttle position < 3 degrees & Vehicle Speed > 15mph
AML EOBD System Operation Summary
Rory O’Curry Aston Martin Lagonda CONFIDENTIAL 1 May 2009
[email protected] AML EOBD Monitors 07 ROC.doc Page 23 of 43
SAIR System Monitor – Flow Check
When the air pump is energized, the MAF sensor will show a corresponding increase in airflow. The
SAIR pump flow check monitors the MAF sensor signal and two air flow models during normal
secondary air system operation to determine if secondary air is being delivered into the exhaust system.
The SAIR pump flow test compares the actual change in MAF during the pump on and off transitions to
the expected change in airflow from the secondary air fl ow model. (A throttle body flow model is used to
"zero out" errors in the air meter and to compensate fo r transient driving conditions.) The actual airflow is
divided by the expected airflow to calculate an "On flow ratio" and an "Off flow ratio".
A flow ratio that is much less than 1.0 means that the air pump has no/low flow, or the inlet hose to the
pump is disconnected. If secondary air system operation ex tends into closed loop fuel, fuel trim feedback
is used to discriminate between low pump flow and in let hose disconnection. A low flow ratio with a lean
fuel system indicates a disconnected inlet hose. A flow ratio significantly higher than 1.0 (and/or a rich
fuel system indication) indicates that th e outlet hose from the pump is disconnected.
SAIR Diagnostic
The V8 uses the standard FORD non-intrusive monitor that has been adapted for use on a V-engine. The
detection capability is detailed below with the V8 specific modifications highlighted
P0410 - Pump inlet hose disconnection.
P0491 - Low airflow into the exhaust on Bank1. Blocked hose OR failed to open vacuum valve.
P0492 - Low airflow into the exhaust on Bank 2. Blocked hose OR failed to open vacuum
valve.
P2448 - Low airflow into the exhaust on Bank1. Disconnected outlet hose.
P2449 - Low airflow into the exhaust on Bank 2. Disconnected outlet hose.
P0412 - SAIR electrical circuit fault high/low on ecu control pin.
P2257 - SAIR electrical circuit fault high on monitor pin.
P2258 - SAIR electrical circuit fault low on monitor pin.
The determination of which bank is receiving low ai rflow is performed by monitoring the closed loop
fuelling correction supplied from the oxygen sensors. The bank that has the highest enleaning correction is
the bank that has the lowest SAIR flow. If closed loop fuelling is not active when the SAIR pump is
disabled the diagnostic cannot determ ine which bank is receiving low flow and so a fault on both banks is
raised.
The relative difference between the commanded lambda values for each bank is used to determine a
restricted flow to either bank1 or 2 due to a restricted outlet. This enables P0491, P0492 to be raised if the
flow ratio is calculated as in range.
The SAIR functional tests run when SAIR is active and the results are stored until the HEGO monitor has
completed (150-200 seconds after SAIR is off on a typical FTP74). It is only when the HEGO monitor has
completed successfully that any functional SAIR fa ults and SAIR monitor complete is reported.
AML EOBD System Operation Summary
Rory O’Curry Aston Martin Lagonda CONFIDENTIAL 1 May 2009
[email protected] AML EOBD Monitors 07 ROC.doc Page 24 of 43
SAIR Diagnostic High Level Flow
AIR Monitor Flow Check Operation: onitor Flow Check Operation:
DTCs P0491 Pump Low Flow Bank1
P0492 Pump Low Flow Bank2
P0410 Pump Inlet Hose Off
P2448 Pump Outlet Hose Off Bank1
P2449 Pump Outlet Hose Off Bank2
P0412 primary side circuit check
P2257, P2258 secondary side circuit checks
Monitor execution Flow check - once per driving cycle, circuit checks – continuous
Monitor Sequence Runs approx. 5 seconds after start during normal SAIR operation
Sensors OK ECT, IAT, MAF, TP, ETC, and HO2S
Monitoring Duration From 5 to 70 seconds
Typical AIR flow check entry conditions: (The monitor will run when the air pump
runs, the entry conditions below are secondary air system entry conditions.) re secondary air
system entry conditions.)
Entry condition Minimum Maximum
Time since engine start-up 5 seconds 70 seconds
Engine Coolant Temperature -7oC (20oF) 35oC (90oF)
Predicted Pump Flow 18.5kg/h (0.68lb/min)
Manifold Vacuum 13.2kPa (3.9”Hg)
Catalyst Temperature 847oC (1558oF)
Inlet Air Temperature -12oC (10oF)
Battery Voltage 11 volts 18 volts
Note: There is a Throttle position stability ch eck that can delay the calculation of the flow ratio. If the throttle is continuously moving, it is
possible, to delay calculation of the flow ratio.
Typical AIR functional check malfunction thresholds:heck malfunction thresholds:
On Flow ratio < 0.75 (P0491, P0492 - Low Flow or, P0410 - Inlet Hose Off)
Off Flow ratio < 0.75 (P0491, P0492 - Lo w Flow or, P0410 - Inlet Hose Off)
Fuel Shift >0.3/Long term fuel shift bank1/bank2 (Clears possible outlet blocked P0491/92, but leaves valid P0410)
Bank1 – Bank2 lambda correcti on error >0.5 (P0491, P0492)
Closed Loop Fuel Control Active >10 seconds (P0491, P0492 – Low Flow)
On Flow ratio > 1.58 (P2448, P2449 – Outlet Hose Off)
AML EOBD System Operation Summary
Rory O’Curry Aston Martin Lagonda CONFIDENTIAL 1 May 2009
[email protected] AML EOBD Monitors 07 ROC.doc Page 27 of 43
Comprehensive Component Monitor - Engine
General Inputs
Analog inputs such as Ambient Air Temperature (P0072, P0073), Intake Air Temperature (P0112, P0113),
Engine Coolant Temperature (P0117, P0118), Cylinder Head Temperature (P1289, P1290), Mass Air Flow
(P0102, P0103) and Manifold Absolute Pressure (P0107, P0108) are checked for opens, shorts, or out-of-
range values by monitoring the analog -to-digital (A/D) input voltage.
Analog Sensor Check Operation:
DTCs P0072, P0073, P0112, P0113, P0117, P0118, P0102, P0103, P0107, P0108,
P1289, P1290
Monitor execution continuous
Monitor Sequence none
Monitoring Duration 5 seconds to register a malfunction
Typical analog sensor check malfunction thresholds:
Voltage < 0.20 volts or voltage > 4.80 volts
On Vehicles fitted with Cylinder Head Temperature (CHT ) Sensors, 'Fail Safe Cooling' can be applied if
the cylinder head temperature is too high. The P1299 DTC will be set under these conditions.
Loss of Keep Alive Memory (KAM) power (a separate wire feeding the PCM) results in a P1633 DTC and
immediate MIL illumination.
Loss or corruption of the Vehicle Identification (VID) Block in the PCM results in a P1639 DTC and
immediate MIL illumination.
Ignition
Electronic Ignition systems (Electronic Distributorless Ignition System - EDIS or Coil on Plug - COP)
systems are used on all applications.
The EDIS system, located in the PCM, processes the 36 (or 40) tooth crankshaft position signal to
generate a low data rate PIP signal to control a 4 or 6 terminal 'double-ended' coil pack. The 'double ended'
coils fire a pair of spark plugs simultaneously - one is on its compression stroke, the other on its exhaust
stroke. The COP system also uses the EDIS system in the same way as described above, however each
sparkplug has it’s own coil which is fired only once on the compression stroke.
The ignition system is checked by monitoring three ignition signals during normal vehicle operation:
Profile Ignition Pickup (CKP, commonly known as PIP), the timing reference signal derived from the crankshaft 36-tooth wheel and processed by the EDIS system. PIP is a 50% duty cycle, square
wave signal that has a rising edge at 10 ° BTDC.
Camshaft IDentification (CMP, commonly known at CID), a signal derived from the camshaft to identify the #1 cylinder