TROUBLE DIAGNOSIS - SPECIFICATION VALUE EC-801
[VK45DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
TROUBLE DIAGNOSIS - SPECIFICATION VALUEPFP:00031
DescriptionNBS004JZ
The specification (SP) value indicates the tolerance of the value that is displayed in “DATA MONITOR (SPEC)”
mode of CONSULT-II during normal operation of the Engine Control System. When the value in “DATA MONI-
TOR (SPEC)” mode is within the SP value, the Engine Control System is confirmed OK. When the value in
“DATA MONITOR (SPEC)” mode is NOT within the SP value, the Engine Control System may have one or
more malfunctions.
The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the
MIL.
The SP value will be displayed for the following three items:
B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board cor-
rection)
A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)
Testing ConditionNBS004K0
Vehicle driven distance: More than 5,000 km (3,107 miles)
Barometric pressure: 98.3 - 104.3 kPa (1.003 - 1.064 kg/cm2 , 14.25 - 15.12 psi)
Atmospheric temperature: 20 - 30 °C (68 - 86 °F)
Engine coolant temperature: 75 - 95 °C (167 - 203 °F)
Transmission: Warmed-up*1
Electrical load: Not applied*2
Engine speed: Idle
*1: After the engine is warmed up to normal operating temperature, drive vehicle until “ATF TEMP SE 1” (A/T
fluid temperature sensor signal) indicates more than 60 °C (140 °F).
*2: Rear window defogger switch, air conditioner switch, lighting switch are OFF. Steering wheel is straight
ahead.
Inspection ProcedureNBS004K1
NOTE:
Perform “DATA MONITOR (SPEC)” mode in maximum scale display.
1. Perform EC-737, "
Basic Inspection" .
2. Confirm that the testing conditions indicated above are met.
3. Select “B/FUEL SCHDL”, “A/F ALPHA-B1”, “A/F ALPHA-B2” and “MAS A/F SE-B1” in “DATA MONITOR (SPEC)” mode with
CONSULT-II.
4. Make sure that monitor items are within the SP value.
5. If NG, go to EC-802, "
Diagnostic Procedure" .
SEF601Z
DTC U1000, U1001 CAN COMMUNICATION LINE EC-819
[VK45DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
DTC U1000, U1001 CAN COMMUNICATION LINEPFP:23710
DescriptionNBS0042J
CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle mul-
tiplex communication line with high data communication speed and excellent error detection ability. Many elec-
tronic control units are equipped onto a vehicle, and each control unit shares information and links with other
control units during operation (not independent). In CAN communication, control units are connected with 2
communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring.
Each control unit transmits/receives data but selectively reads required data only.
On Board Diagnosis LogicNBS0042K
*1: This self-diagnosis has the one trip detection logic.
*2: The MIL will not light up for this diagnosis.
DTC Confirmation ProcedureNBS0042L
1. Turn ignition switch ON and wait at least 3 seconds.
2. Select “DATA MONITOR” mode with CONSULT-II.
3. If 1st trip DTC is detected, go to EC-821, "
Diagnostic Procedure" .
DTC No. Trouble diagnosis
name DTC detecting condition Possible cause
U1000*
1
1000*1CAN communication
line
ECM cannot communicate to other control
units.
ECM cannot communicate for more than the
specified time.
Harness or connectors
(CAN communication line is open or
shorted)
U1001*
2
1001*2
EC-858
[VK45DE]
DTC P0101 MAF SENSOR
Revision: 2006 December 2006 FX35/FX45
DTC P0101 MAF SENSORPFP:22680
Component DescriptionNBS0043C
The mass air flow sensor is placed in the stream of intake air. It mea-
sures the intake flow rate by measuring a part of the entire intake
flow. The mass air flow sensor controls the temperature of the hot
wire to a certain amount. The heat generated by the hot wire is
reduced as the intake air flows around it. The more air, the greater
the heat loss.
Therefore, the electric current supplied to hot wire is changed to
maintain the temperature of the hot wire as air flow increases. The
ECM detects the air flow by means of this current change.
CONSULT-II Reference Value in Data Monitor ModeNBS0043D
Specification data are reference values.
On Board Diagnosis LogicNBS0043E
PBIB1604E
MONITOR ITEM CONDITION SPECIFICATION
MAS A/F SE-B1 See EC-801, "
TROUBLE DIAGNOSIS - SPECIFICATION VALUE" .
CAL/LD VALUE
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No load Idle 14% - 33%
2,500 rpm 12% - 25%
MASS AIRFLOW
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No load Idle 2.0 - 6.0 g·m/s
2,500 rpm 7.0 - 20.0 g·m/s
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0101
0101 Mass air flow sensor cir-
cuit range/performance
problem A)
A high voltage from the sensor is sent to ECM
under light load driving condition.
Harness or connectors
(The sensor circuit is open or
shorted.)
Mass air flow sensor
EVAP control system pressure
sensor
Intake air temperature sensor
B) A low voltage from the sensor is sent to ECM
under heavy load driving condition.
Harness or connectors
(The sensor circuit is open or
shorted.)
Intake air leaks
Mass air flow sensor
EVAP control system pressure
sensor
Intake air temperature sensor
DTC P0102, P0103 MAF SENSOR EC-867
[VK45DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
DTC P0102, P0103 MAF SENSORPFP:22680
Component DescriptionNBS0043L
The mass air flow sensor is placed in the stream of intake air. It mea-
sures the intake flow rate by measuring a part of the entire intake
flow. The mass air flow sensor controls the temperature of the hot
wire to a certain amount. The heat generated by the hot wire is
reduced as the intake air flows around it. The more air, the greater
the heat loss.
Therefore, the electric current supplied to hot wire is changed to
maintain the temperature of the hot wire as air flow increases. The
ECM detects the air flow by means of this current change.
CONSULT-II Reference Value in Data Monitor ModeNBS0043M
Specification data are reference values.
On Board Diagnosis LogicNBS0043N
These self-diagnoses have the one trip detection logic.
FAIL-SAFE MODE
When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.
PBIB1604E
MONITOR ITEM CONDITION SPECIFICATION
MAS A/F SE-B1 See EC-801, "
TROUBLE DIAGNOSIS - SPECIFICATION VALUE" .
CAL/LD VALUE
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No load Idle 14% - 33%
2,500 rpm 12% - 25%
MASS AIRFLOW
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No load Idle 2.0 - 6.0 g·m/s
2,500 rpm 7.0 - 20.0 g·m/s
DTC No. Trouble diagnosis
name DTC detecting condition Possible cause
P0102
0102 Mass air flow sensor
circuit low input An excessively low voltage from the sensor is
sent to ECM.
Harness or connectors
(The sensor circuit is open or shorted.)
Intake air leaks
Mass air flow sensor
P0103
0103 Mass air flow sensor
circuit high input An excessively high voltage from the sensor is
sent to ECM.
Harness or connectors
(The sensor circuit is open or shorted.)
Mass air flow sensor
Detected items Engine operating condition in fail-safe mode
Mass air flow sensor circuit Engine speed will not rise more than 2,400 rpm due to the fuel cut.
DTC P0117, P0118 ECT SENSOR EC-879
[VK45DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
DTC P0117, P0118 ECT SENSORPFP:22630
Component DescriptionNBS00440
The engine coolant temperature sensor is used to detect the engine
coolant temperature. The sensor modifies a voltage signal from the
ECM. The modified signal returns to the ECM as the engine coolant
temperature input. The sensor uses a thermistor which is sensitive to
the change in temperature. The electrical resistance of the ther-
mistor decreases as temperature increases.
*: These data are reference values and are measured between ECM terminal 73
(Engine coolant temperature sensor) and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-
age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
On Board Diagnosis LogicNBS00441
These self-diagnoses have the one trip detection logic.
FAIL-SAFE MODE
When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.
SEF594K
Engine coolant temperature
° C ( °F) Voltage* V Resistance k
Ω
–10 (14) 4.4 7.0 - 11.4 20 (68) 3.5 2.1 - 2.9
50 (122) 2.2 0.68 - 1.00
90 (194) 0.9 0.236 - 0.260
SEF012P
DTC No. Trouble Diagnosis
Name DTC Detecting Condition Possible Cause
P0117
0117 Engine coolant tem-
perature sensor cir-
cuit low input An excessively low voltage from the sensor is
sent to ECM.
Harness or connectors
(The sensor circuit is open or shorted.)
Engine coolant temperature sensor
P0118
0118 Engine coolant tem-
perature sensor cir-
cuit high input An excessively high voltage from the sensor is
sent to ECM.
Detected items Engine operating condition in fail-safe mode
Engine coolant temper- ature sensor circuit Engine coolant temperature will be determined by ECM based on the time after turning ignition switch ON
or START.
CONSULT-II displays the engine coolant temperature decided by ECM.
Condition Engine coolant temperature decided
(CONSULT-II display)
Just as ignition switch is turned ON or START 40 °C (104 °F)
More than approx. 4 minutes after ignition ON or START 80 °C (176 °F)
Except as shown above 40 - 80
°C (104 - 176 °F)
(Depends on the time)
When the fail-safe system for engine coolant temperature sensor is activated, the cooling fan operates
while engine is running.
DTC P0122, P0123 TP SENSOR EC-885
[VK45DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
DTC P0122, P0123 TP SENSORPFP:16119
Component DescriptionNBS00447
Electric throttle control actuator consists of throttle control motor,
throttle position sensor, etc. The throttle position sensor responds to
the throttle valve movement.
The throttle position sensor has the two sensors. These sensors are
a kind of potentiometers which transform the throttle valve position
into output voltage, and emit the voltage signal to the ECM. In addi-
tion, these sensors detect the opening and closing speed of the
throttle valve and feed the voltage signals to the ECM. The ECM
judges the current opening angle of the throttle valve from these sig-
nals and the ECM controls the throttle control motor to make the
throttle valve opening angle properly in response to driving condi-
tion.
CONSULT-II Reference Value in Data Monitor ModeNBS00448
Specification data are reference values.
*: Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.
On Board Diagnosis LogicNBS00449
These self-diagnoses have the one trip detection logic.
FAIL-SAFE MODE
When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.
PBIB0145E
MONITOR ITEM CONDITION SPECIFICATION
THRTL SEN 1
THRTL SEN 2*
Ignition switch: ON
(Engine stopped)
Selector lever: D Accelerator pedal: Fully released More than 0.36V
Accelerator pedal: Fully depressed Less than 4.75V
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0122
0122 Throttle position sensor
2 circuit low input An excessively low voltage from the TP sensor
2 is sent to ECM.
Harness or connectors
(TP sensor 2 circuit is open or shorted.)
(APP sensor 2 circuit is shorted.)
Electric throttle control actuator
(TP sensor 2)
Accelerator pedal position sensor
(APP sensor 2)
P0123
0123 Throttle position sensor
2 circuit high input An excessively high voltage from the TP sen-
sor 2 is sent to ECM.
Engine operation condition in fail-safe mode
The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10
degrees.
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.
So, the acceleration will be poor.
DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION EC-975
[VK45DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTIONPFP:16600
On Board Diagnosis LogicNBS00463
With the Air-Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the
theoretical mixture ratio based on the mixture ratio feedback signal from the air fuel ratio (A/F) sensor 1. The
ECM calculates the necessary compensation to correct the offset between the actual and the theoretical
ratios.
In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the
ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).
DTC Confirmation ProcedureNBS00464
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
WITH CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Turn ignition switch OFF and wait at least 10 seconds.
3. Turn ignition switch ON and select “SELF-LEARNING CONT” in “WORK SUPPORT” mode with CON- SULT-II.
4. Clear the self-learning control coefficient by touching “CLEAR”.
5. Select “DATA MONITOR” mode with CONSULT-II.
6. Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 or P0174 should be detected at this
stage, if a malfunction exists. If so, go to EC-981, "
Diagnostic
Procedure" .
NOTE:
If 1st trip DTC is not detected during above procedure, perform-
ing the following procedure is advised.
a. Turn ignition switch OFF and wait at least 10 seconds.
b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.
Hold the accelerator pedal as steady as possible.
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following con-
ditions should be satisfied at the same time.
Sensor Input Signal to ECM ECM function Actuator
A/F sensor 1 Density of oxygen in exhaust gas
(Mixture ratio feedback signal) Fuel injection control Fuel injector
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0171
0171
(Bank 1)
Fuel injection system too
lean
Fuel injection system does not operate properly.
The amount of mixture ratio compensation is too
large. (The mixture ratio is too lean.)
Intake air leaks
A/F sensor 1
Fuel injector
Exhaust gas leaks
Incorrect fuel pressure
Lack of fuel
Mass air flow sensor
Incorrect PCV hose connection
P0174
0174
(Bank 2)
SEF968Y
Engine speed Engine speed in the freeze frame data ± 400 rpm
Vehicle speed Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)
EC-986
[VK45DE]
DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION
Revision: 2006 December 2006 FX35/FX45
DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTIONPFP:16600
On Board Diagnosis LogicNBS00467
With the Air-Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the
theoretical mixture ratio based on the mixture ratio feedback signal from the air fuel ratio (A/F) sensor 1. The
ECM calculates the necessary compensation to correct the offset between the actual and the theoretical
ratios.
In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the
ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).
DTC Confirmation ProcedureNBS00468
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
WITH CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Turn ignition switch OFF and wait at least 10 seconds.
3. Turn ignition switch ON and select “SELF-LEARNING CONT” in “WORK SUPPORT” mode with CON- SULT-II.
4. Clear the self-learning control coefficient by touching “CLEAR”.
5. Select “DATA MONITOR” mode with CONSULT-II.
6. Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172, P0175 should be detected at this stage,
if a malfunction exists. If so, go to EC-992, "
Diagnostic Proce-
dure" .
NOTE:
If 1st trip DTC is not detected during above procedure, perform-
ing the following procedure is advised.
a. Turn ignition switch OFF and wait at least 10 seconds.
b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to the table below.
Hold the accelerator pedal as steady as possible.
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following con-
ditions should be satisfied at the same time.
7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
8. Crank engine while depressing accelerator pedal.
Sensor Input Signal to ECM ECM function Actuator
A/F sensor 1 Density of oxygen in exhaust gas
(Mixture ratio feedback signal) Fuel injection control Fuel injector
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0172
0172
(Bank 1) Fuel injection system too
rich
Fuel injection system does not operate properly.
The amount of mixture ratio compensation is too
large. (The mixture ratio is too rich.)
A/F sensor 1
Fuel injector
Exhaust gas leaks
Incorrect fuel pressure
Mass air flow sensor
P0175
0175
(Bank 2)
SEF968Y
Engine speed Engine speed in the freeze frame data ± 400 rpm
Vehicle speed Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)
Engine coolant temperature
(T) condition When the freeze frame data shows lower than 70
°C (158 °F),
T should be lower than 70 °C (158 °F).
When the freeze frame data shows higher than or equal to 70 °C (158 °F),
T should be higher than or equal to 70 °C (158 °F).