6E-150 3.5L ENGINE DRIVEABILITY AND EMISSIONS
CIRCUIT DESCRIPTION
The mass air flow (MAF) sensor measures the amount
of air which passes through it into the engine during a
given time. The Engine Control Module (ECM) uses the
mass air flow information to monitor engine operating
conditions for fuel delivery calculations. A large quantity
of air entering the engine indicates an acceleration o
r
high load situation, while a small quantity of air indicates
deceleration or idle.
The MAF sensor produces a frequency signal which
can be monitored using a Tech 2. The frequency will
vary within a range of around 5 to 8 g/s at idle to around
25 to 40 g/s at maximum engine load. DTC P0102 will
be set if the signal from the MAF sensor is below the
possible range of a normally operating MAF sensor.
.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Misrouted harness – Inspect the MAF senso
r
harness to ensure that it is not routed too close to
high voltage wires.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the Tech 2 while moving connectors and wiring
harnesses related to the MAF sensor. A change in
the display will indicate the location of the fault.
If DTC P0102 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set
Diagnostic Trouble Code (DTC) P0102 (Flash Code 61) Mass Air Flow Sensor
Circuit Low Input
Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Connect the Tech 2.
2. Review and record the failure information.
3. Select "F0: Read DTC Infor By Priority" in "F0:
Diagnostic Trouble Code".
Is the DTC P0102 stored as "Present Failure"?
- Go to Step 3 Refer to
Diagnostic Aids
and Go to Step 3
3
1. Using the Tech2, ignition "On" and engine "Off".
2. Select "Clear DTC Information" with the Tech2 and
clear the DTC information.
3. Operate the vehicle and monitor the "F5: Failed
This Ignition" in "F2: DTC Information"
Was the DTC P0102 stored in this ignition cycle?
- Go to Step 4 Refer to
Diagnostic Aids
and Go to Step 4
6E-180 3.5L ENGINE DRIVEABILITY AND EMISSIONS
CIRCUIT DESCRIPTION
The TPS circuit provides a voltage signal that changes
relative to throttle blade angle. The signal voltage will
vary from about 0.6 volts at closed throttle to about 4.5
volts at wide open throttle (WOT).
The TPS signal is one of the most important inputs
used by the Engine Control Module (ECM) for fuel
control and many of the ECM-controlled outputs. The
ECM monitors throttle position and compares actual
throttle position from the TPS to a predicted TPS value
calculated from engine speed. If the ECM detects an
out-of-range condition, DTC P0121 will set.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the ECT display on the Tech 2 while moving
connectors and wiring harnesses related to the
sensor. A change in the display will indicate the
location of the fault.
If DTC P0121 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.
Diagnostic Trouble Code (DTC) P0121 (Flash Code 21) Throttle Position
Sensor (TPS) Circuit Range/Performance
Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Connect the Tech 2.
2. Review and record the failure information.
3. Select "F0: Read DTC Infor By Priority" in "F0:
Diagnostic Trouble Code".
Is the DTC P0121 stored as "Present Failure"?
- Go to Step 3 Refer to
Diagnostic Aids
and Go to Step 3
3
1. Using the Tech2, ignition "On" and engine "Off".
2. Select "Clear DTC Information" with the Tech2 and
clear the DTC information.
3. Operate the vehicle and monitor the "F5: Failed
This Ignition" in "F2: DTC Information"
Was the DTC P0121 stored in this ignition cycle?
- Go to Step 4 Refer to
Diagnostic Aids
and Go to Step 4
4
1. Using the Tech 2, ignition "On" and engine "Off".
2. Monitor the "Throttle Position" in the data display.
Does the Tech 2 indicate correct "Throttle Position"
from 0% to 100% depending on accelerator pedal
operation?
- Go to Step 6 Go to Step 5
5
1. Using the Tech 2, ignition "On" and engine "Off
2. Monitor the "Throttle Position" in the data display.
3. Adjust the TPS within 0% to 100%.
Was the problem solved?
- Verify repair Go to Step 12
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-183
DIAGNOSTIC TROUBLE CODE (DTC) P0122 (FLASH CODE 21) THROTTLE
POSITION SENSOR CIRCUIT LOW INPUT
RUW46EMF000101
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
21 P0122 A Throttle Position
Sensor Low Input TPS output voltage is below 0.24V. The ECM uses default throttle
position value based on mass air
flow and engine speed.
CIRCUIT DESCRIPTION
The TPS circuit provides a voltage signal that changes
relative to throttle blade angle. The signal voltage will
vary from below 0.6 volts at closed throttle to about 4.5
volts at wide open throttle (WOT).
The TPS signal is used by the Engine Control Module
(ECM) for fuel control and many of the ECM-controlled
outputs.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the throttle position display on the Tech 2 while
moving connectors and wiring harnesses related to
the TPS. A change in the display will indicate the
location of the fault.
If DTC P0122 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.
6E-188 3.5L ENGINE DRIVEABILITY AND EMISSIONS
DIAGNOSTIC TROUBLE CODE (DTC) P0123 (FLASH CODE 21) THROTTLE
POSITION SENSOR CIRCUIT HIGH INPUT
RUW46EMF000101
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
21 P0123 A Throttle Position
Sensor High Input TPS output voltage is more than 4.56V. The ECM uses default throttle
position value based on mass air
flow and engine speed.
CIRCUIT DESCRIPTION
The TPS circuit provides a voltage signal that changes
relative to throttle blade angle. The signal voltage will
vary from about 0.6 volts at closed throttle to about 4.5
volts at wide open throttle (WOT).
The TPS signal is one of the most important inputs
used by the Engine Control Module (ECM) for fuel
control and many of the ECM-controlled outputs.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the TPS display on the Tech 2 while moving
connectors and wiring harnesses related to the TP
sensor. A change in the display will indicate the
location of the fault.
Faulty TPS –With the ignition key “ON," engine
“OFF," observe the TPS display on the Tech 2 while
slowly depressing the accelerator to wide open
throttle. If a voltage over 4.56 volts is seen at any
point in normal accelerator travel, replace the TPS.
If DTC P0123 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.
6E-194 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
P0131 A O2 Sensor Circuit Low
Voltage (Bank 1
Sensor 1) 15
P0151 A O2 Sensor Circuit Low
Voltage (Bank 2
Sensor 1) 1. No DTC relating to ECT sensor, CMP sensor, CKP sensor,
VSS, injector control circuit, ignition control circuit and O2
sensor circuit no activity (bank 1 & 2).
2. Engine speed is between 1000rpm and 4000rpm.
3. Engine coolant temperature is between 70C and 110C.
4. Vehicle speed is between 0km/h and 120km/h.
5. Engine load is between 80% and 160%.
6. Throttle position fluctuation is below 0.28V.
7. O2 sensor bank 1 or bank 2 output voltage is more than
400mV for 50 seconds. "Open Loop" fuel control.
CIRCUIT DESCRIPTION
The Engine Control Module (ECM) supplies a bias
voltage of about 450 mV between the heated oxygen
sensor (HO2S) signal high and signal low circuits. The
ECM constantly monitors the HO2S signal during
“closed loop" operation and compensates for a rich o
r
lean condition by decreasing or increasing injector pulse
width as necessary. If HO2S voltage remains
excessively low for an extended period of time, DTC
P0131 or P0151 will be set.
DIAGNOSTIC AIDS
Check for the following conditions:
Heated oxygen sensor wiring – The sensor pigtail
may be routed incorrectly and contacting the exhaus
t
system.
Poor ECM to engine block grounds.
Fuel pressure – The system will go lean if pressure is
too low. The ECM can compensate for some
decrease. However, If fuel pressure is too low, a DTC
P0131 or P0151 may be set. Refer to 6E-116 Fue
l
System Diagnosis.
Lean injector(s) – Perform “Injector Balance Test."
Exhaust leaks – An exhaust leak may cause outside
air to be pulled into the exhaust gas stream past the
HO2S, causing the system to appear lean. Check fo
r
exhaust leaks that may cause a false lean condition
to be indicated.
MAF sensor –The system can go lean if the MAF
sensor signal indicates an engine airflo
w
measurement that is not correct. Disconnect the MAF
sensor to see if the lean condition is corrected. If so,
replace the MAF sensor.
Fuel contamination –Water, even in small amounts,
can be delivered to the fuel injectors. The water can
cause a lean exhaust to be indicated. Excessive
alcohol in the fuel can also cause this condition.
Refer to 6E-116 Fuel System Diagnosisfor the
procedure to check for fuel contamination.
If none of the above conditions are present, replace
the affected HO2S.
6E-202 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
P0132 A O2 Sensor Circuit High
Voltage (Bank 1
Sensor 1) 15
P0152 A O2 Sensor Circuit High
Voltage (Bank 2
Sensor 1) 1. No DTC relating to ECT sensor, CMP sensor, CKP sensor,
VSS, injector control circuit, ignition control circuit and O2
sensor circuit no activity (bank 1 & 2).
2. Engine speed is between 1000rpm and 4000rpm.
3. Engine coolant temperature is between 70 and 110.
4. Vehicle speed is between 0km/h and 120km/h.
5. Engine load is between 80% and 160%.
6. Throttle position fluctuation is below 0.28V.
7. O2 sensor bank 1 or bank 2 output voltage is below
600mV for 50 seconds. "Open Loop" fuel control.
CIRCUIT DESCRIPTION
The Engine Control Module (ECM) supplies a bias
voltage of about 450 mV between the heated oxygen
sensor (HO2S) signal high and signal low circuits. The
ECM constantly monitors the HO2S signal during
“closed loop" operation and compensates for a rich o
r
lean condition by decreasing or increasing injector pulse
width as necessary. If the HO2S voltage remains
excessively high for an extended period of time, DTC
P0132 or P0152 will be set.
DIAGNOSTIC AIDS
Check the following items:
Fuel pressure – The system will go rich if pressure is
too high. The ECM can compensate for some
increase. However, if fuel pressure is too high, a DTC
P0132 or P0152 may be set. Refer to 6E-116 Fue
l
System Diagnosis.
Perform “Injector Balance Test" – Refer to 6E-116
Fuel System Diagnosis.
Check the canister for fuel saturation – If full of fuel,
check canister control and hoses.
MAF sensor –The system can go rich if MAF senso
r
signal indicates an engine airflow measurement that
is not correct. Disconnect the MAF sensor to see it
the rich condition is corrected. If so, replace the MAF
sensor.
Check for a leak in the fuel pressure regulato
r
diaphragm by checking the vacuum line to the
regulator for the presence of fuel. There should be no
fuel in the vacuum line.
An intermittent throttle position sensor output will
cause the system to go rich due to a false indication
of the engine accelerating.
Shorted Heated Oxygen Sensor (HO2S) –If the
HO2S is internally shorted, the HO2S voltage
displayed on the Tech 2 will be over 1 volt. Try
disconnecting the affected HO2S with the key “ON,"
engine “OFF." If the displayed HO2S voltage
changes from over 1000 mV to around 450 mV,
replace the HO2S. Silicon contamination of the
HO2S can also cause a high HO2S voltage to be
indicated. This condition is indicated by a powdery
white deposit on the portion of the HO2S exposed to
the exhaust stream. If contamination is noticed,
replace the affected HO2S.
Open HO2S Signal Circuit or Faulty HO2S–
A poor
connection or open in the HO2S signal circuit can
cause the DTC to set during deceleration fuel mode.
An HO2S which is faulty and not allowing a full
voltage swing between the rich and lean thresholds
can also cause this condition. Operate the vehicle by
monitoring the HO2S voltage with a Tech 2. If the
HO2S voltage is limited within a range between 300
mV to 600 mV, check the HO2S signal circuit wiring
and associated terminal conditions.
If none of the above conditions are present, replace
the affected HO2S.
6E-212 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
P0171 B O2 Sensor System Too
Lean (Bank 1) 44
P0174 B O2 Sensor System Too
Lean (Bank 2) 1. No DTC relating to MAF sensor, IAT sensor, ECT sensor,
TPS, CMP sensor, CKP sensor, VSS, injector control
circuit, ignition control circuit, O2 sensor circuit low voltage
& high voltage (bank 1 & 2) and O2 sensor circuit no
activity (bank 1 & 2).
2. Engine speed is more than 600rpm.
3. Intake air temperature is more than 50C.
4. Engine coolant temperature is between 35C and 120C.
5. Engine load is more than 20%.
6. EVAP purge solenoid valve on-duty is below 100%.
7. Air-fuel ratio correction volume is more than 150%
for 20 seconds. No fail-safe function.
CIRCUIT DESCRIPTION
To provide the best possible combination of driveability,
fuel economy, and emission control, a “closed loop"
air/fuel metering system is used. While in “closed loop,"
the Engine Control Module (ECM) monitors the HO2S
signals and adjusts fuel delivery based upon the HO2S
signal voltages. A change made to fuel delivery will be
indicated by the long and short term fuel trim values
which can be monitored with a Tech 2. Ideal fuel trim
values are around 0%; if the HO2S signals are
indicating a lean condition the ECM will add fuel,
resulting in fuel trim values above 0%. If a rich condition
is detected, the fuel trim values will be below 0%,
indicating that the ECM is reducing the amount of fuel
delivered. If an excessively lean condition is detected,
the ECM will set DTC P0171 or P0174.
The ECM's maximum authority to control long term fuel
trim allows a range between –15% (automatic
transmission) or –12% (manual transmission) and
+20%. The ECM monitors fuel trim under various
engine speed/load fuel trim cells before determining the
status the fuel trim diagnostic.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness – Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the HO2S display on the Tech 2 while moving
connectors and wiring harnesses related to the
engine harness. A change in the display will indicate
the location of the fault.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-217
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
P0172 B O2 Sensor System Too
Rich (Bank 1) 45
P0175 B O2 Sensor System Too
Rich (Bank 2) 1. No DTC relating to MAF sensor, IAT sensor, ECT sensor,
TPS, CMP sensor, CKP sensor, VSS, injector control
circuit, ignition control circuit, O2 sensor circuit low voltage
& high voltage (bank 1 & 2) and O2 sensor circuit no
activity (bank 1 & 2).
2. Engine speed is more than 600rpm.
3. Intake air temperature is more than 50C.
4. Engine coolant temperature is between 35C and 120C.
5. Engine load is more than 20%.
6. EVAP purge solenoid valve on-duty is below 100%.
7. Air-fuel ratio correction volume is below 50% for 20
seconds. No fail-safe function.
CIRCUIT DESCRIPTION
To provide the best possible combination of driveability,
fuel economy, and emission control, a “closed loop"
air/fuel metering system is used. While in “closed loop,"
the Engine Control Module (ECM) monitors the heated
oxygen sensors (HO2S) signals and adjusts fuel
delivery based upon the HO2S signal voltages.
A
change made to fuel delivery will be indicated by the
long and short term fuel trim values which can be
monitored with a Tech 2. Ideal fuel trim values are
around 0%; if the HO2S signals are indicating a lean
condition the ECM will add fuel, resulting in fuel trim
values above 0%. If a rich condition is detected, the fuel
trim values will be below 0%, indicating that the ECM is
reducing the amount of fuel delivered. If an excessively
rich condition is detected on Bank 1, the ECM will se
t
DTC P0172 or P0175.
The ECM's maximum authority to control long term fuel
trim allows a range between –15% (automatic
transmission) or –12 (manual transmission) and +20%.
The ECM's maximum authority to control short term fuel
trim allows a range between –11% and +20%. The ECM
monitors fuel trim under various engine speed/load fuel
trim cells before determining the status of the fuel trim
diagnostic.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the HO2S display on the Tech 2 while moving
connectors and wiring harnesses related to the
engine harness. A change in the display will indicate
the location of the fault.