ENGINE CONTROLS 1F – 441
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0304
CYLINDER 4 MISFIRE
System Description
The Engine Control Module (ECM) monitors the crank-
shaft and camshaft positions to detect if the engine is mis-
firing. The ECM looks for a quick drop in crankshaft speed.
This test is executed in blocks of 100 engine revolution
tests. It may take between one to several tests to store a
Diagnostic Trouble Code (DTC) and illuminate the Mal-
function Indicator Lamp (MIL). Under light misfire condi-
tions, it may also take more than one trip to set a DTC. Se-
vere misfire will flash the MIL, indicating that catalyst
damage is possible.
Conditions for Setting the DTC
S Emission threshold is 3%.
S 20 engine cycles have occurred since cranking has
started.
S A/C compressor clutch has not just engaged or dis-
engaged.
S Engine load and engine speed is in a detectable
region and is at or above zero torque.
S Camshaft Position (CMP) sensor is in synchroniza-
tion.
S Exhaust Gas Recirculation (EGR) flow diagnostic is
not in progress.
S Fuel level is greater than 12% of rated tank capac-
ity.
S Decel Fuel Cutoff (DFCO) not active.
S Throttle position change is less than 3% per 125
ms.
S Vehicle has not encountered an abusive engine
speed of 7000 rpm.
S Crankshaft speed patters are normal.
S Throttle position is less than 3% when vehicle
speed is greater than 10 km/h (6 mph).
S Vehicle voltage is between 11 and 16 volts.
S Engine Coolant Temperature (ECT) is between
–7°C (19°F) and 120°C (248°F).
S There is the correct ratio between Crankshaft Posi-
tion (CKP) sensor pulses and CMP sensor pulses.
S DTCs P0106, P0107, P0108, P0117, P0118,
P0122, P0123, P0336, P0337, P0341, P0342 and
P0502 are not set.
Action Taken When the DTC Sets
S The MIL will illuminate after two consecutive ignition
cycles in which the diagnostic runs with the fault
active.
Or
S The MIL will illuminate immediately and flash if mis-
fire is present.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault
within the freeze frame conditions that the DTC
failed.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S The DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent can also be the result of a defective reluctor
wheel. Remove the CKP sensor and inspect the reluctor
wheel through the sensor mount hole. Check for porosity
and the condition of wheel. If the DTC is intermittent refer
to”Symptoms Diagnosis” in this section.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
3. A visual/physical inspection should include check-
ing the following components:
S The wiring for proper connections, pinches or
cuts.
S The ECM grounds for being clean and tight.
S The vacuum hoses for splits, kinks, and proper
connections as shown on the Vehicle Emission
Information label. Check thoroughly for any type
of leak or restriction.
S For air leaks at the throttle body mounting area
and intake manifold sealing surfaces.
5. When all the accumulators are relatively equal, then
the misfire is being caused by something that af-
fects the entire engine. When they are not then the
misfire is being caused by something that is specif-
ic to two or more cylinders.
6. Whenever the misfire is not present operating the
vehicle may be necessary to duplicate the condi-
tions in the Freeze Frame Data in order to detect
misfire. Depending on the engine load, the condi-
tions may have to be maintained for up to 20 sec-
onds. Whenever the misfire accumulators start to
increment, then misfire is present. A history misfire
counter will store the number of misfires that have
occurred until the DTC is cleared.
1F – 468IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0401
EXHAUST GAS RECIRCULATION INSUFFICIENT FLOW
Circuit Description
An Exhaust Gas Recirculation (EGR) system is used to
lower Nitrogen Oxide (NOx) emission levels caused by
high combustion temperatures. It accomplishes this by
feeding small amounts of exhaust gases back into the
combustion chamber. When the air/fuel mixture is diluted
with the exhaust gases, combustion temperatures are re-
duced
A linear EGR valve is used on this system. The linear EGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum. The
valve controls exhaust flow going into the intake manifold
from the exhaust manifold through an orifice with an En-
gine Control Module (ECM) controlled pintle. The ECM
controls the pintle position using inputs from the Throttle
Position (TP) and Manifold Absolute Pressure (MAP) sen-
sors. The ECM then commands the EGR valve to operate
when necessary by controlling an ignition signal through
the ECM. This can be monitored on a scan tool as the De-
sired EGR Position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EGR valve, a voltage signal representing the
EGR valve pintle position is sent to the ECM. This feed-
back signal can also be monitored on a scan tool and is the
actual position of the EGR pintle. The Actual EGR Position
should always be near the commanded or Desired EGR
Position.
This diagnostic will determine if there is a reduction in EGR
flow.
Conditions for Setting the DTC
S DTCs P0106, P0107, P0108, P0117, P0118,
P0122, P0123, P0201, P0202, P0203, P0204,
P0351, P0352, P0402, P0404, P1404, P0405,
P0406 and P0502 are not set.
S Test in Decel Fuel Cutoff (DFCO) mode.
S Barometric Pressure (BARO) is greater than 72
kPa (10.4 psi).
S Vehicle speed is greater than 18 km/h (11.2
mph).
S A/C clutch/transmission clutch are unchanged.
S Rpm is between 1400 and 3000 for manual
transaxle.
S Rpm is between 1300 and 2900 for automatic
transaxle.
S Compensated MAP is with 10.3 to 32 kpa (1.5 to
4.6 psi) range.
S Start test
S Throttle position (TP) sensor is less then 1%.
S EGR is less than 1%.
S Change in MAP is less than 1.0 kpa (0.15 psi)Note : Test will be aborted when:
S Change in vehicle speed is greater than 5km/h (3.1
mph).
S Rpm is increased more than 75.
S EGR opened less than 90% commanded position.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will store conditions which were present
when the DTC set as Failure Records data only.
This information will not be stored in the Freeze
Frame data.
S A history Diagnostic Trouble Code (DTC) is stored.
S EGR is disabled.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
The EGR Decel Filter value can be a great aid in determin-
ing if a problem exists and to verify repairs. The EGR De-
cel Filter is an average of the difference in the expected
MAP change and the actual MAP change caused by open-
ing the EGR valve during a deceleration, and is used to de-
termine when the MIL is illuminated. By driving the vehicle
up to approximately 97 km/h (60 mph) and decelerating to
32 km/h (20 mph), it can be determined if the EGR system
is OK, partially restricted, or fully restricted.
A more negative number (less than –3) indicates that the
system is working normally, whereas a positive number in-
dicates that the system is being restricted and that the ex-
pected amount of EGR flow is was not seen. A number
that falls between negative 3 and positive 2 indicates that
the system is partially restricted but not restricted enough
to cause an emissions impact.
The EGR Decel Filter value should always be at –3 or low-
er. If the EGR Decel Filter number becomes more positive
(towards 0 or more), then the EGR system is becoming re-
stricted. Look for possible damage to the EGR pipe or for
a restriction caused by carbon deposits in the EGR pas-
sages or on the EGR valve.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
ENGINE CONTROLS 1F – 507
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0532
A/C PRESSURE SENSOR LOW VOLTAGE
Circuit Description
The Air Conditioning (A/C) system uses an A/C refrigerant
pressure sensor mounted in the high pressure side of the
A/C refrigerant system to monitor A/C refrigerant pres-
sure. The Engine Control Module (ECM) uses this infor-
mation to turn ON the engine coolant fans when the A/C
refrigerant pressure is high and to keep the compressor
disengaged when A/C refrigerant pressure is excessively
high or low.
The Air Conditioning Pressure (ACP) sensor operates like
other 3–wire sensors. The ECM applies a 5.0 volt refer-
ence and a sensor ground to the sensor. Changes in the
A/C refrigerant pressure will cause the ACP sensor input
to the ECM to vary. The ECM monitors the ACP sensor
signal circuit and can determine when the signal is outside
of the possible range of the sensor. When the signal is out
of range for a prolonged period of time, the ECM will not
allow the A/C compressor clutch to engage. This is done
to protect the compressor.
Conditions for Setting the DTC
S A/C pressure is less than 1 % of the sensor reading
scale.
S Engine is running.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Failure Records buffers.
S A history DTC is stored.
S The A/C compressor operation will be disabled
while the low voltage indication exists.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Inspect harness connectors for backed–out terminals, im-
proper mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connection at
the ECM.
Inspect the wiring harness for damage. If the harness ap-
pears to be OK, observe the A/C pressure display on the
scan tool while moving the connectors and wiring har-
nesses related to the A/C Pressure sensor. A change in
the A/C pressure display will indicate the location of the
fault.
If DTC P0532 cannot be duplicated, reviewing the Fail Re-
cords vehicle mileage since the diagnostic test last failed
may help determine how often the condition that caused
the DTC to set occurs. This may assist in diagnosing the
condition.
1F – 510IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0533
A/C PRESSURE SENSOR HIGH VOLTAGE
Circuit Description
The Air Conditioning (A/C) system uses an A/C refrigerant
pressure sensor mounted in the high pressure side of the
A/C refrigerant system to monitor A/C refrigerant pres-
sure. The Engine Control Module (ECM) uses this infor-
mation to turn ON the engine coolant fans when the A/C
refrigerant pressure is high and to keep the compressor
disengaged when A/C refrigerant pressure is excessively
high or low.
The Air Conditioning Pressure (ACP) sensor operates like
other 3–wire sensors. The ECM applies a 5.0 volt refer-
ence and a sensor ground to the sensor. Changes in the
A/C refrigerant pressure will cause the ACP sensor input
to the ECM to vary. The ECM monitors the ACP sensor
signal circuit and can determine when the signal is outside
of the possible range of the sensor. When the signal is out
of range for a prolonged period of time, the ECM will not
allow the A/C compressor clutch to engage. This is done
to protect the compressor.
Conditions for Setting the DTC
S A/C pressure is greater than 99% of the sensor
reading scale.
S Engine is running.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Failure Records buffers.
S A history DTC is stored.
S The A/C compressor operation will be disabled
while the high voltage indication exists.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Inspect harness connectors for backed–out terminals, im-
proper mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connection at
the ECM.
Inspect the wiring harness for damage. If the harness ap-
pears to be OK, observe the A/C pressure display on the
scan tool while moving the connectors and wiring har-
nesses related to the ACP sensor. A change in the A/C
pressure display will indicate the location of the fault.
If DTC P0533 cannot be duplicated, reviewing the Fail Re-
cords vehicle mileage since the diagnostic test last failed
may help determine how often the condition that caused
the DTC to set occurs. This may assist in diagnosing the
condition.
ENGINE CONTROLS 1F – 575
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
5Replace the sensor in the affected circuit, if a Diag-
nostic Trouble Code (DTC) was stored for this circuit
(except for the DTCs P0171 and P0172.
Is the repair complete?–System OK–
6Does an intermittent Malfunction Indicator Lamp
(MIL) or DTC occur?–Go toStep 7Go toStep 8
71. Check for a faulty relay, electronic control mod-
ule (ECM) driven solenoid, or switch.
2. Check for improper installation of electrical de-
vices, such as lights, two–way radios, electric
motors, etc.
3. Inspect the ignition control wires for proper
routing (away from ignition wires, ignition sys-
tem components, and the generator).
4. Check for a short–to–ground in the MIL circuit
or the DLC ”test” terminal.
5. Inspect the ECM ground connections.
6. Correct or repair the affected circuits as need-
ed.
Is the repair complete?–System OK–
81. Check for a loss of DTC memory.
2. 2. Disconnect the Throttle Position Sensor.
3. Run the engine at idle until the MIL comes on.
4. Turn the ignition OFF.
Is DTC P0122 stored in memory?–Go toStep 10Go toStep 9
9Replace the ECM.
Is the repair complete?–System OK–
10Does the vehicle stall while driving?–Go toStep 11Go toStep 12
11Monitor the Front Heated Oxygen Sensor (HO2S1)
and the injector base pulse width with the scan tool.
Does the scan tool display a steady low voltage
(about 0 mv) for the HO2S1 sensor with the control
module commanding an injector base pulse width of
the value specified?8 msGo toStep 9Go toStep 12
121. Check for an open diode across the A/C clutch
and for other open diodes.
2. Repair or replace any components as needed.
Is the repair complete?–System OK–
ENGINE CONTROLS 1F – 579
DAEWOO V–121 BL4
SURGES OR CHUGGLES
Definition : Engine power varies under steady throttle or
cruise, making it feel as if the vehicle speeds up and slows
down with no change in the accelerator pedal position.
Important : Make sure the driver understands Torque
Converter Clutch (TCC) and A/C compressor operation as
described in the owner’s manualThe speedometer reading and the speed reading on the
scan tool should be equal.
Before diagnosing the symptom, check service bulletins
for updates.
Step
ActionValue(s)YesNo
1Were the Important Preliminary Checks performed?–Go toStep 2Go to
”Important Pre-
liminary
Checks”
2Connect the scan tool to the Data Link Connector
(DLC).
Does the Front Heated Oxygen Sensor (HO2S1) re-
spond quickly to different throttle positions?–Go toStep 4Go toStep 3
31. Check the HO2S1 sensor for silicone or other
contaminants from fuel or use of improper
Room Temperature Vulcanizing (RTV) sealant.
2. Replace the contaminated HO2S1 sensor.
Is the repair complete?–System OK–
41. Drive the vehicle at the speed of the complaint.
2. Monitor the long term fuel trim reading using
the scan tool.
Is the long term fuel trim reading within the value
specified?–20–25%Go toStep 7Go toStep 5
5Is the long term fuel trim reading below the value
specified?–20%Go to
”Diagnostic
Aids for DTC
P0172”Go toStep 6
6Is the long term fuel trim reading above the value
specified?25%Go to
”Diagnostic
Aids for DTC
P0171”–
7Check the fuel system pressure while the condition
exists.
Is the fuel system pressure within specifications?41–47 psi
(284–325 kPa)Go toStep 8Go toStep 17
8Check the in–line fuel filter.
Is the filter dirty or plugged?–Go toStep 18Go toStep 9
9Perform an injector diagnosis.
Does the injector balance test pinpoint the problem?–Go toStep 19Go toStep 10
101. Check for proper ignition voltage output using a
spark tester.
2. Inspect the spark plugs for cracks, wear, im-
proper gap, burned electrodes, or heavy de-
posits.
Is the problem found?–Go toStep 11Go toStep 12
11Repair or replace any ignition system components
as needed.
Is the repair complete?–System OK–
1F – 580IENGINE CONTROLS
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
121. Inspect the engine control module (ECM)
grounds to make sure they are clean, tight, and
in their proper locations.
2. Inspect the vacuum lines for kinks or leaks.
Is the problem found?–Go toStep 13Go toStep 14
13Repair the electrical connections or the vacuum
lines as needed.
Is the repair complete?–System OK–
14Check the generator output voltage.
Is the generator voltage within the value specified?12–16 vGo toStep 16Go toStep 15
15Repair the generator.
Is the repair complete?–System OK–
161. Check for intermittent Exhaust Gas Recircula-
tion (EGR) valve operation.
2. Check Torque Converter Clutch (TCC) opera-
tion.
3. Repair or replace any components as needed.
Is the repair complete?–System OK–
17Repair the fuel system as needed.
Is the repair complete?–System OK–
18Replace the fuel filter.
Is the repair complete?–System OK–
19Replace the leaking or restricted fuel injectors.
Is the repair complete?–System OK–
1F – 582IENGINE CONTROLS
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
141. Check the cylinder compression and valve tim-
ing.
2. Inspect the camshaft for excessive wear.
Is the problem found?–Go toStep 15Go toStep 16
15Repair or replace any engine components as need-
ed.
Is the repair complete?–System OK–
161. Check the engine control module (ECM)
grounds for being clean, tight, and in their prop-
er location.
2. Check the Exhaust Gas Recirculation (EGR)
valve for being open or partially open all the
time.
3. Check the Torque Converter Clutch (TCC) op-
eration.
4. Check the A/C system operation.
5. Check the generator output.
6. Repair the generator if the output is not within
the specified range.
Are all checks and repairs complete?12–16 vSystem OK–