5A1 – 2IZF 4 HP 16 AUTOMATIC TRANSAXLE
DAEWOO V–121 BL4
DTC P0722 – Output Speed Sensor(OSS)
Circuit No Signal 5A1–107. . . . . . . . . . . . . . . . . . . . . .
DTC P0725 – Engine Speed Input Circuit
Malfunction 5A1–110. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0726 – Engine Speed Input Circuit
Range/Performance 5A1–112. . . . . . . . . . . . . . . . . . .
DTC P0727 – Engine Speed Input Circuit No
Signal 5A1–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0731 – Gear 1 Incorrect Ratio 5A1–116. . . . . .
DTC P0732 – Gear 2 Incorrect Ratio 5A1–118. . . . . .
DTC P0733 – Gear 3 Incorrect Ratio 5A1–120. . . . . .
DTC P0734 – Gear 4 Incorrect Ratio 5A1–122. . . . . .
DTC P0781 – 1–2 Shift Malfunction 5A1–124. . . . . . .
DTC P0782 – 2–3 Shift Malfunction 5A1–126. . . . . . .
DTC P0783 – 3–4 Shift Malfunction 5A1–128. . . . . . .
DTC P1604 – Data Check of Internal &
Extended Ram Failed 5A1–130. . . . . . . . . . . . . . . . . .
DTC P1606 – Failure Of External Watchdog 5A1–132
DTC P1671 – CAN Transmit Message
Failure 5A1–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1672 – CAN Bus Off Failure 5A1–136. . . . . . . .
DTC P1673 – CAN Receive ECM Message
Failure 5A1–138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1839 – EDS 3 Output Shorted To
Ground 5A1–140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1840 – EDS 3 Output Shorted To
Power 5A1–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1841 – EDS 3 Output Open 5A1–144. . . . . . . .
DTC P1850 – Solenoid 1 Output Shorted To
Ground 5A1–146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1851 – Solenoid 1 Output Shorted To
Power 5A1–148. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1852 – Solenoid 1 Output Open 5A1–150. . . .
DTC P1853 – Solenoid 2 Output Shorted To
Ground 5A1–152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1854 – Solenoid 2 Output Shorted To
Power 5A1–154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1855 – Solenoid 2 Output Open 5A1–156. . . .
DTC P1861 – EDS 4 Output Shorted To
Ground 5A1–158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1862 – EDS 4 Output Shorted To
Power 5A1–160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1863 – EDS 4 Output Open 5A1–162. . . . . . . .
DTC P1864 – EDS 5 Output Shorted To
Ground 5A1–164. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1865 – EDS 5 Output Shorted To
Power 5A1–166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1866 – EDS 5 Output Open 5A1–168. . . . . . . .
DTC P1867 – EDS 6 Output Shorted To
Ground 5A1–170. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTC P1868 – EDS 6 Output Shorted To
Power 5A1–172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1869 – EDS 6 Output Open 5A1–174. . . . . . . .
DTC P1871 – EDS Valve Power Supply
Circuit Shorted to Power 5A1–176. . . . . . . . . . . . . . .
DTC P1874 – Solenoid Valve Power Supply
Circuit Shorted to Power 5A1–178. . . . . . . . . . . . . . .
DTC P1881 – 2–1 Shift Malfunction 5A1–180. . . . . . .
DTC P1883 – 3–2 Shift Malfunction 5A1–182. . . . . . .
DTC P1884 – 4–3 Shift Malfunction 5A1–184. . . . . . .
DTC P1885 – 3–1 Shift Malfunction 5A1–186. . . . . . .
DTC P1886 – 4–2 Shift Malfunction 5A1–188. . . . . . .
MAINTENANCE AND REPAIR5A1–190 . . . . . . . . . . . .
ON–VEHICLE SERVICE 5A1–190. . . . . . . . . . . . . . . . . .
Transaxle Fluid Level Checking Procedure 5A1–190.
Changing the Fluid 5A1–191. . . . . . . . . . . . . . . . . . . . . .
Fluid Level Set After Service 5A1–192. . . . . . . . . . . . .
Repairing Fluid Leaks 5A1–192. . . . . . . . . . . . . . . . . . .
Case Porosity Repair 5A1–193. . . . . . . . . . . . . . . . . . . .
Shift Control Lever Assembly 5A1–193. . . . . . . . . . . . .
Shift Control Cable 5A1–195. . . . . . . . . . . . . . . . . . . . . .
Shift Control Cable Adjustment 5A1–196. . . . . . . . . . .
Transaxle Control Module(TCM) 5A1–197. . . . . . . . . .
Park/Neutral Start Switch 5A1–198. . . . . . . . . . . . . . . .
Oil Cooler Pipes/Hoses 5A1–199. . . . . . . . . . . . . . . . . .
Drive Axle Oil Seal 5A1–201. . . . . . . . . . . . . . . . . . . . . .
Oil Pan, Oil Pan Gasket 5A1–201. . . . . . . . . . . . . . . . .
Control Valve Body Assembly 5A1–203. . . . . . . . . . . .
Left Transaxle Mounting Bracket 5A1–205. . . . . . . . . .
Transaxle Assembly 5A1–206. . . . . . . . . . . . . . . . . . . . .
UNIT REPAIR 5A1–212. . . . . . . . . . . . . . . . . . . . . . . . . . .
Torque Converter 5A1–212. . . . . . . . . . . . . . . . . . . . . . .
Transaxle Holding Fixture Assembly 5A1–212. . . . . . .
Valve Body 5A1–212. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rear Cover 5A1–213. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clutch B/E 5A1–214. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clutch B/E Measurement Procedure 5A1–217. . . . . .
Planetary Gear Set 5A1–220. . . . . . . . . . . . . . . . . . . . .
Brake C/D 5A1–221. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential 5A1–224. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Side Shaft 5A1–224. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Brake F, Slotted Nut 5A1–225. . . . . . . . . . . . . . . . . . . . .
Torque Converter Housing 5A1–227. . . . . . . . . . . . . . .
Shift Mechanism 5A1–228. . . . . . . . . . . . . . . . . . . . . . . .
Parking Lock System 5A1–229. . . . . . . . . . . . . . . . . . . .
Bearing Plate(With Spur Gear) Assembly 5A1–229. .
Oil Pump Assembly 5A1–229. . . . . . . . . . . . . . . . . . . . .
Differential/Side Shaft Outer Race, Bearing
Shim 5A1–230. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ZF 4 HP 16 AUTOMATIC TRANSAXLE 5A1 – 3
DAEWOO V–121 BL4
Important Measurement/Adjustment 5A1–230. . . . . . .
GENERAL DESCRIPTION AND SYSTEM
OPERATION5A1–232 . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Components 5A1–232. . . . . . . . . . . . . . . . .
Electronical Components 5A1–236. . . . . . . . . . . . . . . .
TCM Inputs That Affect the 4HP 16
Transaxle 5A1–241. . . . . . . . . . . . . . . . . . . . . . . . . . .
INTRODUCTION
ZF 4HP 16 AUTOMATIC TRANSAXLE
The ZF 4 HP 16 is a four–speed automatic transaxle de-
signed for cars with front–wheel drive and a transversely
mounted engine.
The transaxle has a hydrodynamic torque converter with
a controlled slip lock–up clutch.
A planetary gear train establishes the mechanical gear ra-
tios. The integral constant ratio can be adapted to the en-
gine’s power output and the vehicle’s weight. The elec-
tronic–hydraulic control makes controlled power shifts and
various shift programs possible. In selector lever position
”P”, the output is locked mechanically.The special feature of this transaxle is that it operates with-
out freewheels. Shifting between individual gears takes
place by means of overlapping clutch engagement and re-
lease.
The advantage of overlap shifting is as follows:
– The transaxle can be of more compact design
and is lighter on account of the absence of free-
wheels and the lower number of shift elements
– Lower drag losses, i.e. higher efficiency
– Lower peak torques acting on the components
and driveline.
However, overlap shifting necessitates high–performance
hardware and software, and precision engine signals.
ZF 4 HP 16 AUTOMATIC TRANSAXLE 5A1 – 5
DAEWOO V–121 BL4
SPECIFICATIONS
GENERAL SPECIFICATIONS
Definition
Transaxle Type4–speed with four–wheel drive and transverse engine
Input Torque240 NSm (177 lb–ft)
Transaxle Weight76kg (168 lb)
Torque Converter Capacity9.72kg (21.4 lb)
Transaxle Fluid Type (manufacture company)ESSO LT 71141 or TOTAL ATF H50235
Transaxle Fluid Capacity7.3qt (6.9L)
TRANSAXLE GEAR RATIO
GearRatio
First2.719
Second1.487
Third1.000
Fourth0.717
Reverse 2.529
Final3.945:1
FLUID CAPACITY
LitresQuarts
Bottom Pan Removal44.2
Complete Overhaul6.97.3
Torque Converter Removal22.1
(Measurements are approximate)
FASTENER TIGHTENING SPECIFICATIONS
ApplicationNSmLb–FtLb–In
Bearing Plate Bolts23.517.5–
Slotted Nut220162–
Rear Cover Attachment Bolts23.517.5–
Baffle Plate Attachment Bolts10–89
Park/Neutral Position Switch10–89
Fluid Pump Connecting Bolts10–89
Fluid Filter Housing Cover Attachment Bolts10–89
Input Speed sensor Attachment Bolts8–71
Output Speed Sensor Attachment Bolts8–71
Valve Body Bolts8–71
Valve Body Upper & Lower Fixing Bolts6–53
Fluid Pan Connecting Bolts6–53
Fluid Pan Drain Plug4533–
5A1 – 6IZF 4 HP 16 AUTOMATIC TRANSAXLE
DAEWOO V–121 BL4
Application Lb–InLb–Ft NSm
Fluid Level Plug4533–
Line Pleasure Plugs2015–
Valve Housing 1 Cover Attachment Bolts6–53
Solenoid Valve Attachment Bolts6–53
Pressure Control Regulator(EDS) Attachment Bolts6–53
Oil Cooler Inlet Pipe Bolts3526–
Oil Cooler Outlet Pipe Bolts3526–
Shift Control Cable Adjuster Pinch Nut8–71
Shift Control Cable Attachment Nut8–71
Upper Transaxle–to–Engine Bolts7555–
Selector Lever(On Transaxle Case)1511–
Torque Converter Attachment Bolts4533–
Shift Control Assembly Mounting Bolt, Nut8–71
Lower Engine–to–Transaxle Bolts(a)7555–
Lower Engine–to–Transaxle Bolt(b)2115–
Lower Engine–to–Transaxle Bolts(c)3123–
Rear Transaxle Mounting Bracket Bolts6245–
Damping Block Connection Bolt and Nut6850–
Left Transaxle Mount Bracket Cage Bolt(a)11 081–
Left Transaxle Mount Bracket Cage Bolt(b)6548–
Left Transaxle Mount Bracket Cage Nut(c)6548–
Left Transaxle Mounting Bolts4835–
ZF 4 HP 16 AUTOMATIC TRANSAXLE 5A1 – 9
DAEWOO V–121 BL4
SPECIAL TOOLS
SPECIAL TOOLS TABLE
Scan Tool
DW110–060
Engine Support Fixture
DW260–020
Transaxle Holding
Fixture
DW260–010
Transaxle Support
Fixture
DW260–030
Axle Seal Installer
DW260–050
Park/Neutral Position
Switch Installer
DW260–060
Brake F Split Stop Ring
Remover/Installer
DW260–070
Transaxle Fluid Plug
Remover/Installer
5A1 – 18IZF 4 HP 16 AUTOMATIC TRANSAXLE
DAEWOO V–121 BL4
Park/Neutral
In Park or Neutral with the engine running there is no drive
to the planetary gear set. Line pressure (from the oil pump)
is supplied to the valve body. Only clutch B is supplied and
the torque converter is released.
Control
Line Pressure Control Valve
The line pressure control valve sets the general pressure
level in the valve body. When gearshifts are not taking
place, the line pressure varies between two levels, de-
pending on the turbine torque. Line pressure increase lin-
early by time. But it has a limit point. When pressure reach-
es that point, excess oil pressure drains back into the oil
sump.
Reduction Valve
The reduction valve reduces the line pressure with which
the downstream solenoid valves and pressure control so-
lenoid valves (EDS) are supplied. This makes it possible
to use smaller solenoid valves.
The line pressure comes from the oil pump and flows to the
reduction valve. The inlet port to the reduction valve will be
blocked and line pressure will be maintained at the ap-
propriate level.
Solenoid Valve 1, 2
Solenoid Valve 1 controls the line pressure (high and low)
to the clutch valves. Solenoid Valve 1 is either ON or OFF.
When the solenoid is turned ON the line pressure will be
low [87~116psi (6~8bar)].When the solenoid is turned
OFF the line pressure will be high [232~261psi
(16~18bar)].
Solenoid 2 controls the fluid flow to clutch valve E or the
TCC clutch valve. When solenoid 2 is ON fluid is directed
to the TCC pressure valve and if the solenoid is switched
OFF fluid will flow to the inlet at clutch valve E.The TCM monitors numerous inputs to determine the ap-
propriate solenoid state combination and transaxle gear
for the vehicle operating conditions.
In Park and Neutral solenoid valve 1 is ON. So line pres-
sure flows to the safety valve and the line pressure control
valve via the solenoid valve.
Clutch B Engaged
In Park and Neutral solenoid valves 1 and 2 are both ON.
Pressure control solenoids (EDS) 4 and 6 are also turned
ON.
When EDS 6 is ON, the fluid supplied from the reduction
valve flows to the safety valve, clutch valve B and holding
valve B. The oil that is supplied to the inlet port of the clutch
valve presses on the valve spool. Line pressure then flows
to the holding valve and check ball, engaging clutch B.
Lock–up Clutch (TCC)
Solenoid 2 is turned ON and the line pressure control
valves spool will be depressed. Fluid will now flow through
the torque converter pressure valve.
As a result, the oil pressure behind the converter lock–up
clutch piston and in the turbine zone is equal. The direction
of flow is through the turbine shaft and through the space
behind the piston, to the turbine chamber.
Lubrication/Cooling.
The lubricating valve ensures that the converter is sup-
plied with cooling oil first if the pump rate is low. The lubri-
cating pressure valve in addition guarantees that the nec-
essary amount of cooling and lubricating oil is available via
the bypass duct.
The fluid, which is supplied from the torque converter,
flows to the cooler via the lubrication valve.
ZF 4 HP 16 AUTOMATIC TRANSAXLE 5A1 – 43
DAEWOO V–121 BL4
DIAGNOSTIC INFORMATION AND
PROCEDURES DIAGNOSIS
BASIC KNOWLEDGE REQUIRED
You must be familiar with some basic electronics to use
this section of the Service Manual. They will help you to
follow diagnostic procedures.
Notice : Lack of the basic knowledge of this transaxle
when performing diagnostic procedures could result in in-
correct diagnostic performance or damage to transaxle
components.
Do not, under any circumstances, attempt to diagnose a
transaxle problem without this basic knowledge.
Notice : If a wire is probed with a sharp instrument and not
properly sealed afterward, the wire will corrode and an
open circuit will result.
Diagnostic test probes are now available that allow you to
probe individual wires without leaving the wire open to the
environment. These probe devices are inexpensive and
easy to install, and they permanently seal the wire from
corrosion.
Special Tools
You should be able to use a Digital Volt Meter (DVM), a cir-
cuit tester, jumper wires or leads and a line pressure gauge
set.
The functional check procedure is designed to verify the
correct operation of electronic components in the trans-
axle.
This will eliminate the unnecessary removal of transaxle
components.
FUNCTIONAL CHECK PROCEDURE
Begin with the Functional Check Procedure which pro-
vides a general outline of how to diagnose automatic
transaxle. The following functional check procedure will in-
dicate the proper path of diagnosing the transaxle by de-
scribing the basic checks and then referencing the loca-
tions of the specific checks.
S Check the fluid level according to the Fluid Level
Service Procedure.
S Check the transaxle for fluid leaks.
S Check if the transaxle fluid is not burnt by color and
smell.
S Ensure that the transaxle is not in Limp Home
Mode(LHM).
S Check the battery terminals and the ground con-
nections for corrosion or looseness.
S Check that the cooler flow is not restricted.S Check all electrical connections for tightness.
S Use on–board diagnostic tool or a scan tool to see
if any transaxle trouble codes have been set. Refer
to the appropriate ”Diagnostic Trouble Code (DTC)”
information and repair the vehicle as directed. After
repairing the vehicle, perform the road test and
verify that the code has not set again.
S Perform the Electrical/Garage Shift Tests.
S Perform the Road Test Procedure in this section.
S Inspect the oil and check for metal or other contam-
inants in the oil pan.
LINE PRESSURE CHECK
PROCEDURE
The 4HP 16 A/T uses a trochoid type oil pump to produce
hydraulic pressure, and a pressure control solenoid (sole-
noid 1) to control that pressure at the pressure regulator
valve, after it leaves the pump. The transaxle pressure
control solenoid is controlled by an electrical signal that
ranges from 0 to 12 volts corresponds to minimum line
pressure (approx. 89.9 to 124.7 psi (6.2 to 8.6 bar)) and
0 volt corresponds to a maximum line pressure (approx.
221.9 to 252.4 psi (15.3 to 17.4 bar)) in all range.
Line pressures are calculated for two sets of gear ranges
– Drive–Park–Neutral and Reverse. This allow the trans-
axle line pressure to be appropriate for different pressure
needs in different gear ranges:
Gear
Range
Solenoid
1RPMPressure
Drive,
ReverseOff2,500221.9~252.4psi
(15.3~17.4 bar)
On2,50017.4~269.8psi
(1.2~18.6 bar)
Neutral,
ParkOff2,500221.9~252.4psi
(15.3~17.4 bar)
On2,50089.9~269.8 psi
(6.2~18.6 bar)
Before performing a line pressure check, verify that the
pressure control solenoid is receiving the correct electrical
signal from the TCM:
1. Install a scan tool.
2. Start the engine and set parking brake.
3. Check for a stored pressure control solenoid diag-
nostic trouble code, and other diagnostic trouble
codes.
5A1 – 44IZF 4 HP 16 AUTOMATIC TRANSAXLE
DAEWOO V–121 BL4
4. Repair vehicle, if necessary.
Inspect:
S Fluid level.
S Manual linkage.
Install or Connect:
S Scan tool (scanner)
S Oil pressure gauge at line pressure port (clutch B or
E ports on transaxle case)
5. Put gear selector in Park and set the parking brake.6. Start engine and allow it to warm up at idle.
7. Access the ”Solenoid 1 Control Mode” on the scan-
ner.
8. Switching solenoid 1 ON/OFF, accelerating the en-
gine to 2,500rpm, and then read the line pressure
at the each gear.
9. Compare data to the Drive–Park–Neutral line pres-
sure chart below.
Notice : Total test running time should not exceed 2 min-
utes, or transaxle damage could occur.
CAUTION : Brake must be applied at all times to pre-
vent unexpected vehicle motion.
If pressure readings differ greatly from the line pressure
chart, refer to the Diagnosis Charts contained in this sec-
tion.
Notice : Clutch damage may occur.
The scanner is only able to control the pressure control so-
lenoid in Park and Neutral with the vehicle stopped.
This protects the clutches from extremely high or low pres-
sures in Drive or Reverse rang.
Gear Range
SolenoidLine
Pressure B PortE Port
Park / NeutralONLOW90~124.7 psi (6.2~8.6 bar)
OFFHIGH221.9~252.3 ps
i (15.3~17.4 bar)
ReverseONLOW90~124.7 psi (6.2~8.6 bar)
OFFHIGH221.9~252.3 psi
(15.3~17.4 bar)
DriveONLOW90~124.7 psi (6.2~8.6 bar)
OFFHIGH137.7~162.4 psi
(9.5~11.2 bar)
3ONLOW90~124.7 psi (6.2~8.6 bar)90~124.7 psi (6.2~8.6 bar)
OFFHIGH221.9~252.3 psi
(15.3~17.4 bar)137.7~162.4 psi
(9.5~11.2 bar)
2ONLOW90~124.7 psi (6.2~8.6 bar)
OFFHIGH137.7~162.4 psi
(9.5~11.2 bar)
1ONLOW90~124.7 psi (6.2~8.6 bar)
OFFHIGH221.9~252.3 psi
(15.3~17.4 bar)