1F – 78IENGINE CONTROLS
DAEWOO V–121 BL4
Manifold Absolute Pressure Check (1.8L DOHC)
StepActionValue(s)YesNo
11. Turn the ignition OFF.
2. Connect a scan tool to the Data Link Connec-
tor (DLC).
3. Turn the ignition ON.
4. Compare the Manifold Absolute Pressure
(MAP) sensor voltage reading from the scan-
ner with that from a known good vehicle.
Is the difference in the two voltage readings less
than the value specified?0.4 vGo to Step 2Go to Step 5
21. Turn the ignition OFF.
2. Connect a scan tool to the DLC.
3. Disconnect the MAP sensor vacuum line.
4. Connect a hand vacuum pump to the MAP
sensor.
5. Turn the ignition ON.
6. Note the MAP sensor voltage.
7. Apply 10 in. Hg (34 kPa) of vacuum to the
MAP sensor and note the voltage change.
Is the difference in voltage readings more than the
value specified?1.5 vSystem OKGo to Step 3
3Inspect the MAP sensor connector terminals.
Is the problem found?–Go to Step 4Go to Step 5
4Repair the MAP sensor connector terminals as
needed.
Is the repair complete?–System OK–
5Replace the MAP sensor.
Is the repair complete?–System OK–
1F – 114IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0107
MANIFOLD ABSOLUTE PRESSURE SENSOR LOW
VOLTAGE
Circuit Description
The engine control module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure, which results
from engine load (intake manifold vacuum) and the rpm
changes; and converts these into voltage outputs. The
ECM sends a 5 volt–reference voltage to the MAP sensor.
As the manifold pressure changes, the output voltage of
the MAP sensor also changes. By monitoring the MAP
sensor output voltage, the ECM knows the manifold pres-
sure. A low–pressure (low voltage) output voltage will be
about 1.0 to 1.5 volts at idle, while higher pressure (high
voltage) output voltage will be about 4.5 to 4.8 at wide
open throttle (WOT). The MAP sensor is metric pressure,
allowing the ECM to make adjustments for different alti-
tudes.
Conditions for Setting the DTC
S This DTC can be stored in ”key–on” status.
(Case A)
S When the engine idling.
S No throttle position(TP) sensor MTIA fail conditions
present.
S Engine speed(rpm) is less than 2,500rpm.
S The MAP is less than 12.0 kPa.
(Case A)
S When the engine part load.
S The engine revolution speed is less than 4,000rpm.S No Throttle Position (TP) Sensor fails conditions
present.
S The Throttle Position (TP) angle greather than
30.0°.
S The MAP is less than 11.5 kPa.
S An open or low voltage condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmosphere pressure and the signal
voltage will be high.
ENGINE CONTROLS 1F – 115
DAEWOO V–121 BL4
The ECM as an indication of vehicle altitude uses this in-
formation. Comparison of this reading with a known good
vehicle with the same sensor is a good way to check the
accuracy of a suspect sensor. Readings should be the
same ± 0.4volt.
If a DTC P0107 is intermittent, refer to ”Manifold AbsolutePressure Check” in this section for further diagnosis.
If the connections are OK monitor the manifold absolute
pressure (MAP) sensor signal voltage while moving re-
lated connectors and the wiring harness. If the failure is in-
duced, the display on the scan tool will change. This may
help to isolate the location of an intermittent malfunction.
DTC P0107 – Manifold Absolute Pressure Sensor Low Voltage
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Connect the scan tool to the data link connec-
tor (DLC).
2. Turn the ignition switch to ON.
Does the scan tool show the manifold absolute pres-
sure (MAP) sensor voltage above the value speci-
fied?4VGo to Step 3Go to Step 4
31. Disconnect the vacuum line from the MAP sen-
sor.
2. Apply 88kPA (20in.of Hg) of vacuum to the
MAP sensor.
Does the scan tool show the MAP sensor voltage
within the value specified?1.0–1.5VGo to
”Diagnostic
Aids”Go to Step 4
41. Turn the ignition switch to LOCK.
2. Disconnect the MAP sensor connector.
3. Turn the ignition switch to ON.
4. Measure the voltage between the MAP sensor
connector terminals A and C.
Does the voltage measure within the value speci-
fied?4.5–5.5VGo to Step 5Go to Step 6
5Connect a fused jumper between the MAP sensor
connector terminals B and C.
Does the scan tool show the MAP sensor voltage
above the value specified?4VGo to Step 11Go to Step 9
6Measure the voltage between the MAP sensor con-
nector terminal A and ground.
Does the voltage measure within the value speci-
fied?4.5–5.5VGo to Step 7Go to Step 8
71. Turn the ignition switch to LOCK.
2. Check for open wires between the MAP sensor
connector terminal A and the ECM connector
terminal 13.
Is the problem found?–Go to Step 10Go to Step 12
81. Turn the ignition switch to LOCK.
2. Check for an open or short to ground in the
wire between the MAP sensor connector termi-
nal C and the ECM connector terminal 50.
Is the problem found ?–Go to Step 10Go to Step 12
1F – 116IENGINE CONTROLS
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
91. Turn the ignition switch to LOCK.
2. Check for an open or short to ground in the
wire between the MAP sensor connector termi-
nal B and the ECM connector terminal 75.
Is the problem found ?–Go to Step 10Go to Step 12
101. Repair the wire or the connector terminal as
needed.
2. Clear any DTCs from the ECM.
3. Perform the diagnostic system check.
Is the repair complete?–System OK–
111. Replace the manifold absolute pressure sen-
sor.
2. Clear any DTCs from the ECM.
3. Perform the diagnostic system check.
Is the replacement complete?–System OK–
12Replace the ECM.
Is the replacement complete?–Go to Step 13Go to Step 2
13Check if any additional DTCs are set.
Are any DTCs displaced that have not been diag-
nosed?–Go to
applicable DTC
tableSystem OK
ENGINE CONTROLS 1F – 117
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0108
MANIFOLD ABSOLUTE PRESSURE SENSOR HIGH
VOLTAGE
Circuit Description
The engine control module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure, which results
from engine load (intake manifold vacuum) and the rpm
changes; and converts these into voltage outputs. The
ECM sends a 5 volt–reference voltage to the MAP sensor.
As the manifold pressure changes, the output voltage of
the MAP sensor also changes. By monitoring the MAP
sensor output voltage, the ECM knows the manifold pres-
sure. A low–pressure (low voltage) output voltage will be
about 1.0 to 1.5 volts at idle, while higher pressure (high
voltage) output voltage will be about 4.5 to 4.8 at wide
open throttle (WOT). The MAP sensor is metric pressure,
allowing the ECM to make adjustments for different alti-
tudes.
Conditions for Setting the DTC
S This DTC can be stored in ”key–on” status.
S When the engine idling.
S Engine speed is greater than 700rpm.
S No throttle position sensor (TPS) fail conditions
present.
S The MAP is greater than 95kPA.
S A high voltage condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmosphere pressure and the signal
voltage will be high.
The ECM as an indication of vehicle altitude uses this in-
formation. Comparison of this reading with a known good
vehicle with the same sensor is a good way to check the
accuracy of a suspect sensor. Readings should be the
same ±0.4volt.
If a DTC P0108 is intermittent, refer to ”Manifold Absolute
Pressure Check” in this section for further diagnosis.
If the connections are OK monitor the manifold absolute
pressure(MAP) sensor signal voltage while moving re-
lated connectors and the wiring harness. If the failure is in-
duced, the display on the scan tool will change. This may
help to isolate the location of an intermittent malfunction.
1F – 118IENGINE CONTROLS
DAEWOO V–121 BL4
DTC P0108 – Manifold Absolute Pressure Sensor High Voltage
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Connect the scan tool to the data link connec-
tor (DLC).
2. Turn the ignition switch to ON.
Does the scan tool show the manifold absolute pres-
sure (MAP) sensor voltage above the value speci-
fied?4VGo to Step 3Go to Step 4
31. Disconnect the vacuum line from the MAP sen-
sor.
2. Apply 66kPA (20in.of Hg) of vacuum to the
MAP sensor.
Does the scan tool show the MAP sensor voltage
within the value specified?1.0–1.5VGo to
”Diagnostic
Aids”Go to Step 4
41. Turn the ignition switch to LOCK.
2. Disconnect the MAP sensor connector.
3. Turn the ignition switch to ON.
4. Measure the voltage between the MAP sensor
connector terminals A and C.
Does the voltage measure within the value speci-
fied?4.5–5.5VGo to Step 5Go to Step 6
5Connect a fused jumper between the MAP sensor
connector terminals B and C.
Does the scan tool show the MAP sensor voltage
above the value specified?4VGo to Step 11Go to Step 9
6Measure the voltage between the MAP sensor con-
nector terminal A and ground.
Does the voltage measure within the value speci-
fied?4.5–5.5VGo to Step 7Go to Step 8
71. Turn the ignition switch to LOCK.
2. Check for open wires between the MAP sensor
connector terminal A and the ECM connector
terminal 13.
Is the problem found?–Go to Step 10Go to Step 12
81. Turn the ignition switch to LOCK.
2. Check for an open or short to ground in the
wire between the MAP sensor connector termi-
nal C and the ECM connector terminal 50.
Is the problem found ?–Go to Step 10Go to Step 12
91. Turn the ignition switch to LOCK.
2. Check for an open or short to ground in the
wire between the MAP sensor connector termi-
nal B and the ECM connector terminal 75.
Is the problem found ?–Go to Step 10Go to Step 12
1F – 128IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0118
ENGINE COOLANT TEMPERATURE SENSOR HIGH
VOLTAGE
Circuit Description
The coolant temperature sensor (ECT) uses a thermistor
to control the signal voltage to the engine control module
(ECM).
he ECM supplies a voltage on the signal circuit to the sen-
sor. When the air is cold, the resistance is high; therefore
the ECT sensor signal voltage will be high.
As the engine warms, the sensor resistance becomes
less, and the voltage drops. At normal engine operating
temperature, the voltage will be between 1.5 and 2.0 volts
at the ECT sensor signal terminal.
The ECT sensor is used to the following items:
S Fuel delivery.
S Lock Up Clutch (LUC).
S Ignition.
S Evaporative Emission (EVAP) Canister Purge
Valve.
S Electric cooling fan.
Conditions for Setting the DTC
S ECT voltage is greater than 4.98V.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
After the engine has started, the ECT should rise steadily
to about 90°C (194°F) then stabilize when the thermostat
opens.
Use the temperature vs. Resistance values table to evalu-
ate the possibility of a skewed sensor. Refer to ”Tempera-
ture vs. Resistance” in this section.
1F – 158IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0171
FUEL TRIM SYSTEM TOO LEAN
System Description
If the adaptation value threshold is permanently exceed-
ed, the deviation of the adaptive terms enables to detect
a slow default coming out. Two time counters (one for the
rich side and another one for the lean side) are increased
while the lambda controller exceeds the adaptation
thresholds. As soon as one of the time counters reaches
its maximum value, the error is detected.
The aim of this test is to simulate a failure that would result
in exceeding the adaptive terms. Two kinds of failure must
be created.
S A lean side deviation: P0171
S A rich side deviation : P0172
It is thus necessary to determine, for each kind of failure,
the limit good and the limit bad. For a given failure, mea-
sure the emission threshold until the legal emission
thresholds are exceeded.
Note that the problem is due to the emission thresholds re-
quired, it is not simple to disturb the system so that the
emission thresholds will be exceeded. The tuning has
been made thanks to a dedicated calibration but, as such
a procedure is not permitted by the regulation, it is neces-
sary to create some material malfunction (fuel pressure
regulator, fuel injector, air leakage...).
Conditions for Setting the DTC
S DTCs P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0131, P0132, P0337,
P0338, P0341, P0342, P0400, P1319, P1402,
P1404, P1405, P1671 and P1672 are not set.
S Coolant temperature is greater than 20°C (68°F).
(1.4L DOHC)
S Coolant temperature is greater than 80°C (176°F).
(1.6L DOHC)
S Manifold Absolute Pressure (MAP) is greater than
70 kPa (10.2 psi).
S System is in closed loop.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fail. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
Important : After repairs, use the scan tool Fuel Trim Re-
set function to reset the long–term fuel trim to 128 (0%).
S Fuel pressure – The system will be lean if the pres-
sure is too low. It may be necessary to monitor fuel
pressure while driving the vehicle at various road
speeds and/or loads to confirm.
S Map sensor – An output that causes the ECM to
sense a lower than normal manifold pressure (high
vacuum) can cause the system to go lean. Discon-
necting the MAP sensor will allow the ECM to sub-
stitute a fixed (default) value for the MAP sensor. If
the lean condition is gone when the sensor is dis-
connected, substitute a known good sensor and
recheck.
S Fuel contamination – Water, in even small amounts,
near the in–tank fuel pump inlet can be delivered to
the injector. The water causes a lean exhaust and
can set DTC P0171.
Check for poor O2S or MAP sensor connection at the
ECM. Inspect the harness connectors for the following
conditions:
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal–to–wire connection
Inspect the wiring harness for damage. If the harness ap-
pears to be OK, observe the O2S display on the scan tool
while moving the connectors and the wiring harness re-
lated to the engine harness. A change in the display will
indicate the location of the fault.
Check the brake power booster check valve for possible
leaks.