gauge readings during normal operation that are con-
sistent with customer expectations. However, when
abnormal conditions exist such as high coolant tem-
perature, the algorithm can drive the gauge pointer
to an extreme position and the microprocessor can
sound a chime through the on-board chime tone gen-
erator to provide distinct visual and audible indica-
tions of a problem to the vehicle operator. The
instrument cluster circuitry may also perform chime
service for other electronic modules in the vehicle
based upon electronic chime tone request messages
received over the PCI data bus to provide the vehicle
operator with an audible alert to supplement a visual
indication. One such alert is a door ajar warning
chime, which the EMIC provides by monitoring PCI
bus messages from the Body Control Module (BCM).
The EMIC circuitry operates on battery current
received through a fused B(+) fuse in the Junction
Block (JB) on a non-switched fused B(+) circuit, and
on battery current received through a fused ignition
switch output (run-start) fuse in the JB on a fused
ignition switch output (run-start) circuit. This
arrangement allows the EMIC to provide some fea-
tures regardless of the ignition switch position, while
other features will operate only with the ignition
switch in the On or Start positions. The EMIC
receives a ground input from the BCM as a wake-up
signal in order to provide the ignition-off features.
The EMIC circuitry is grounded through a ground
circuit and take out of the instrument panel wire
harness with an eyelet terminal connector that is
secured by a nut to a ground stud located on the left
instrument panel end bracket.
The EMIC also has a self-diagnostic actuator test
capability, which will test each of the PCI bus mes-
sage-controlled functions of the cluster by lighting
the appropriate indicators (except the airbag indica-
tor), sweeping the gauge needles to several calibra-
tion points across the gauge faces, and stepping the
odometer display sequentially from all ones through
all nines. (Refer to 8 - ELECTRICAL/INSTRUMENT
CLUSTER - DIAGNOSIS AND TESTING). See the
owner's manual in the vehicle glove box for more
information on the features, use and operation of the
EMIC.
GAUGES All gauges receive battery current
through the EMIC circuitry when the ignition switch
is in the On or Start positions. With the ignition
switch in the Off position battery current is not sup-
plied to any gauges, and the EMIC circuitry is pro-
grammed to move all of the gauge needles back to
the low end of their respective scales. Therefore, the
gauges do not accurately indicate any vehicle condi-
tion unless the ignition switch is in the On or Start
positions. All of the EMIC gauges, except the odome-
ter, are air core magnetic units. Two fixed electro-magnetic coils are located within each gauge. These
coils are wrapped at right angles to each other
around a movable permanent magnet. The movable
magnet is suspended within the coils on one end of a
pivot shaft, while the gauge needle is attached to the
other end of the shaft. One of the coils has a fixed
current flowing through it to maintain a constant
magnetic field strength. Current flow through the
second coil changes, which causes changes in its
magnetic field strength. The current flowing through
the second coil is changed by the EMIC circuitry in
response to messages received over the PCI data bus.
The gauge needle moves as the movable permanent
magnet aligns itself to the changing magnetic fields
created around it by the electromagnets.
The gauges are diagnosed using the EMIC self-di-
agnostic actuator test. (Refer to 8 - ELECTRICAL/
INSTRUMENT CLUSTER - DIAGNOSIS AND
TESTING). Proper testing of the PCI data bus and
the electronic data bus message inputs to the EMIC
that control each gauge require the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic infor-
mation. Specific operation details for each gauge may
be found elsewhere in this service information.
VACUUM-FLUORESCENT DISPLAY The Vacu-
um-Fluorescent Display (VFD) module is soldered to
the EMIC circuit board. The display is active when
the driver door is opened with the ignition switch in
the Off or Accessory positions (Rental Car mode), and
with the ignition switch in the On or Start positions.
The VFD is inactive when the ignition switch is in
the Off or Accessory positions and the driver door is
closed. The illumination intensity of the VFD is con-
trolled by the EMIC circuitry based upon electronic
dimming level messages received from the BCM over
the PCI data bus, and is synchronized with the illu-
mination intensity of other VFDs in the vehicle. The
BCM provides dimming level messages based upon
internal programming and inputs it receives from the
control knob and control ring on the left (lighting)
control stalk of the multi-function switch on the
steering column.
The VFD has several display capabilities including
odometer, trip odometer, and warning messages
whenever the appropriate conditions exist. The VFD
warning messages include:
²ªdoorº- indicating a door is ajar.
²ªgateº- indicating the tailgate is ajar.
²ªglassº- indicating the tailgate glass is ajar.
²ªlowashº- indicating that the washer fluid
level is low.
²ªno busº- indicating there is no PCI data bus
communication detected.
An odometer/trip odometer switch on the EMIC cir-
cuit board is used to control the display modes. This
switch is actuated manually by depressing the odom-
KJINSTRUMENT CLUSTER 8J - 5
INSTRUMENT CLUSTER (Continued)
eter/trip odometer switch button that extends
through the lower edge of the cluster lens, just right
of the speedometer. Actuating this switch momen-
tarily with the ignition switch in the On position will
toggle the VFD between the odometer and trip odom-
eter modes. Depressing the switch button for about
two seconds while the VFD is in the trip odometer
mode will reset the trip odometer value to zero. Hold-
ing this switch depressed while turning the ignition
switch from the Off position to the On position will
initiate the EMIC self-diagnostic actuator test. The
VFD will also display the cluster software version
level near the completion of the EMIC self-diagnostic
actuator test. Refer to the appropriate diagnostic
information for additional details on this VFD func-
tion.
The VFD is diagnosed using the EMIC self-diag-
nostic actuator test. (Refer to 8 - ELECTRICAL/IN-
STRUMENT CLUSTER - DIAGNOSIS AND
TESTING). Proper testing of the PCI data bus and
the electronic data bus message inputs to the EMIC
that control some of the VFD functions requires the
use of a DRBIIItscan tool. Refer to the appropriate
diagnostic information. Specific operation details for
the odometer, the trip odometer, and the various
warning message functions of the VFD may be found
elsewhere in this service information.
INDICATORS Indicators are located in various
positions within the EMIC and are all connected to
the EMIC circuit board. The turn signal indicators,
security indicator, washer fluid indicator, and coolant
low indicator (diesel engine only) use hard wired
inputs to the EMIC. The brake indicator is controlled
by PCI data bus messages from the Controller
Antilock Brake (CAB) as well as by hard wired park
brake switch and brake fluid level switch inputs to
the EMIC. The Malfunction Indicator Lamp (MIL) is
normally controlled by PCI data bus messages from
the Powertrain Control Module (PCM); however, if
the EMIC loses PCI data bus communication, the
EMIC circuitry will automatically turn the MIL on
until PCI data bus communication is restored. The
EMIC uses PCI data bus messages from the Body
Control Module (BCM), the PCM, the Airbag Control
Module (ACM), and the CAB to control all of the
remaining indicators.
The various indicators are controlled by different
strategies; some receive fused ignition switch output
from the EMIC circuitry and have a switched ground,
others are grounded through the EMIC circuitry and
have a switched battery feed, while still others are
completely controlled by the EMIC microprocessor
based upon various hard wired and electronic mes-
sage inputs. Some indicators are illuminated at a
fixed intensity, while the illumination intensity ofothers is synchronized with that of the EMIC general
illumination lamps.
In addition, certain indicators in this instrument
cluster are automatically configured or self-config-
ured. This feature allows the configurable indicators
to be enabled by the EMIC circuitry for compatibility
with certain optional equipment. The ABS indicator,
airbag indicator, SKIS indicator are automatically
configured by PCI data bus messages received by the
EMIC from the CAB, ACM, or Sentry Key Immobi-
lizer Module (SKIM) after the EMIC is installed in
the vehicle. Once these configuration settings are
learned by the EMIC, the DRBIIItscan tool must be
used to remove these settings from the EMIC non-
volatile memory. The self-configured indicators
remain latent in each EMIC at all times and will be
activated only when the EMIC receives the appropri-
ate PCI message inputs for the optional system or
equipment.
The hard wired indicators are diagnosed using con-
ventional diagnostic methods. The EMIC and PCI
bus message controlled indicators are diagnosed
using the EMIC self-diagnostic actuator test. (Refer
to 8 - ELECTRICAL/INSTRUMENT CLUSTER -
DIAGNOSIS AND TESTING). Proper testing of the
PCI data bus and the electronic data bus message
inputs to the EMIC that control each indicator
require the use of a DRBIIItscan tool. Refer to the
appropriate diagnostic information. Specific details of
the operation for each indicator may be found else-
where in this service information.
CLUSTER ILLUMINATION The EMIC has several
illumination lamps that are illuminated when the
exterior lighting is turned on with the headlamp
(multi-function) switch. The illumination intensity of
these lamps is adjusted by a 12-volt Pulse Width
Modulated (PWM) output of the EMIC when the
interior lighting control ring on the left control stalk
of the multi-function switch is rotated (down to dim,
up to brighten) to one of six available minor detent
positions. The BCM provides electronic dimming
level messages based upon internal programming
and inputs it receives from the control knob and con-
trol ring on the left (lighting) control stalk of the
multi-function switch on the steering column, then
provides a control output to energize or de-energize
the park lamp relay as appropriate. The energized
park lamp relay provides battery current to the
EMIC on the hard wired fused park lamp relay out-
put circuit, and the BCM provides the electronic dim-
ming level message to the EMIC over the PCI data
bus. The EMIC electronic circuitry provides the
proper PWM output to the cluster illumination lamps
and the VFD on the EMIC circuit board, then pro-
vides a synchronized PWM output on the hard wired
8J - 6 INSTRUMENT CLUSTERKJ
INSTRUMENT CLUSTER (Continued)
OPERATION
The cruise indicator gives an indication to the vehi-
cle operator when the speed control system is turned
On, regardless of whether the speed control is
engaged. This indicator is controlled by a transistor
on the instrument cluster electronic circuit board
based upon the cluster programming and electronic
messages received by the cluster from the Powertrain
Control Module (PCM) over the Programmable Com-
munications Interface (PCI) data bus. The cruise
indicator Light Emitting Diode (LED) is completely
controlled by the instrument cluster logic circuit, and
that logic will only allow this indicator to operate
when the instrument cluster receives a battery cur-
rent input on the fused ignition switch output (run-
start) circuit. Therefore, the LED will always be off
when the ignition switch is in any position except On
or Start. The LED only illuminates when it is pro-
vided a path to ground by the instrument cluster
transistor. The instrument cluster will turn on the
cruise indicator for the following reasons:
²Cruise Lamp-On Message- Each time the
cluster receives a cruise lamp-on message from the
PCM indicating the speed control system has been
turned On, the cruise indicator is illuminated. The
indicator remains illuminated until the cluster
receives a cruise lamp-off message from the PCM or
until the ignition switch is turned to the Off position,
whichever occurs first.
²Actuator Test- Each time the cluster is put
through the actuator test, the cruise indicator will be
turned on, then off again during the bulb check por-
tion of the test in order to confirm the functionality
of the LED and the cluster control circuitry.
The PCM continually monitors the speed control
switches to determine the proper outputs to the
speed control servo. The PCM then sends the proper
cruise indicator lamp-on and lamp-off messages to
the instrument cluster. For further diagnosis of the
cruise indicator or the instrument cluster circuitry
that controls the indicator, (Refer to 8 - ELECTRI-
CAL/INSTRUMENT CLUSTER - DIAGNOSIS AND
TESTING). For proper diagnosis of the speed control
system, the PCM, the PCI data bus, or the electronic
message inputs to the instrument cluster that control
the cruise indicator, a DRBIIItscan tool is required.
Refer to the appropriate diagnostic information.
DOOR AJAR INDICATOR
DESCRIPTION
A door ajar indicator is standard equipment on all
instrument clusters. The door ajar indicator consists
of the word ªdoorº, which appears in place of the
odometer/trip odometer information in the Vacuum-Fluorescent Display (VFD) of the instrument cluster.
The VFD is part of the cluster electronic circuit
board, and is visible through a cutout located near
the lower edge of the speedometer dial face in the
instrument cluster. The dark outer layer of the over-
lay prevents the VFD from being clearly visible when
it is not illuminated. The word ªdoorº appears in the
same blue-green color and at the same lighting level
as the odometer/trip odometer information through
the translucent outer layer of the overlay when it is
illuminated by the instrument cluster electronic cir-
cuit board. The door ajar indicator is serviced as a
unit with the instrument cluster.
OPERATION
The door ajar indicator gives an indication to the
vehicle operator that one or more of the passenger
compartment doors may be open or not completely
latched. This indicator is controlled by the instru-
ment cluster electronic circuit board based upon clus-
ter programming and electronic messages received by
the cluster from the Body Control Module (BCM)
over the Programmable Communications Interface
(PCI) data bus. The door ajar indicator function of
the Vacuum Fluorescent Display (VFD) is completely
controlled by the instrument cluster logic circuit, and
that logic will only allow this indicator to operate
when the instrument cluster receives a battery cur-
rent input on the fused ignition switch output (run-
start) circuit. Therefore, the VFD door ajar indication
will always be off when the ignition switch is in any
position except On or Start. The instrument cluster
will turn on the door ajar indicator for the following
reasons:
²Door Ajar Lamp-On Message- Each time the
cluster receives a door ajar lamp-on message from
the BCM indicating that a door is open or not com-
pletely latched, the door ajar indicator will be illumi-
nated. If the vehicle is not moving when the door
ajar lamp-on message is received, the VFD will
repeatedly and sequentially cycle its indication in
two second intervals with the odometer/trip odometer
information, the door ajar warning, and any other
active warnings including: gate ajar, glass ajar, and
low washer fluid. If the vehicle is moving, or once the
cluster of a non-moving vehicle receives an electronic
vehicle speed message from the Powertrain Control
Module (PCM) indicating a speed greater than zero,
the warning sequence will consist of three complete
display cycles, then revert to only the odometer/trip
odometer display until the door ajar switch is cycled.
The door ajar indicator will also be extinguished
when the cluster receives a door ajar lamp-off mes-
sage from the BCM, or if the ignition switch is
turned to the Off position, whichever occurs first.
KJINSTRUMENT CLUSTER 8J - 17
CRUISE INDICATOR (Continued)
instrument cluster will turn on the gate ajar indica-
tor for the following reasons:
²Gate Ajar Lamp-On Message- Each time the
cluster receives a gate ajar lamp-on message from
the BCM indicating that the rear tailgate is open or
not completely latched, the gate ajar indicator will be
illuminated. If the vehicle is not moving when the
gate ajar lamp-on message is received, the VFD will
repeatedly and sequentially cycle its indication in
two second intervals with the odometer/trip odometer
information, the gate ajar warning, and any other
active warnings including: door ajar, glass ajar, and
low washer fluid. If the vehicle is moving, or once the
cluster of a non-moving vehicle receives an electronic
vehicle speed message from the Powertrain Control
Module (PCM) indicating a speed greater than zero,
the warning sequence will consist of three complete
display cycles, then revert to only the odometer/trip
odometer display until the tailgate ajar switch is
cycled. The gate ajar indicator will also be extin-
guished when the cluster receives a gate ajar lamp-
off message from the BCM, or if the ignition switch is
turned to the Off position, whichever occurs first.
The BCM continually monitors the tailgate ajar
switch that is integral to the tailgate latch to deter-
mine the status of the rear tailgate. The BCM then
sends the proper gate ajar lamp-on and lamp-off mes-
sages to the instrument cluster. For further diagnosis
of the gate ajar indicator or the instrument cluster
circuitry that controls the indicator, (Refer to 8 -
ELECTRICAL/INSTRUMENT CLUSTER - DIAGNO-
SIS AND TESTING). For proper diagnosis of the tail-
gate ajar switch and circuit, the BCM, the PCI data
bus, or the electronic message inputs to the instru-
ment cluster that control the gate ajar indicator, a
DRBIIItscan tool is required. Refer to the appropri-
ate diagnostic information.
GLASS AJAR INDICATOR
DESCRIPTION
A glass ajar indicator is standard equipment on all
instrument clusters. The glass ajar indicator consists
of the word ªglassº, which appears in place of the
odometer/trip odometer information in the Vacuum-
Fluorescent Display (VFD) of the instrument cluster.
The VFD is part of the cluster electronic circuit
board, and is visible through a cutout located near
the lower edge of the speedometer dial face in the
instrument cluster. The dark outer layer of the over-
lay prevents the VFD from being clearly visible when
it is not illuminated. The word ªglassº appears in the
same blue-green color and at the same lighting level
as the odometer/trip odometer information through
the translucent outer layer of the overlay when it isilluminated by the instrument cluster electronic cir-
cuit board. The glass ajar indicator is serviced as a
unit with the instrument cluster.
OPERATION
The glass ajar indicator gives an indication to the
vehicle operator that the rear flip-up glass may be
open or not completely latched. This indicator is con-
trolled by the instrument cluster electronic circuit
board based upon cluster programming and elec-
tronic messages received by the cluster from the
Body Control Module (BCM) over the Programmable
Communications Interface (PCI) data bus. The glass
ajar indicator function of the Vacuum Fluorescent
Display (VFD) is completely controlled by the instru-
ment cluster logic circuit, and that logic will only
allow this indicator to operate when the instrument
cluster receives a battery current input on the fused
ignition switch output (run-start) circuit. Therefore,
the VFD glass ajar indicator will always be off when
the ignition switch is in any position except On or
Start. The instrument cluster will turn on the glass
ajar indicator for the following reasons:
²Glass Ajar Lamp-On Message- Each time the
cluster receives a glass ajar lamp-on message from
the BCM indicating that the rear flip-up glass is
open or not completely latched, the glass ajar indica-
tor will be illuminated. If the vehicle is not moving
when the glass ajar lamp-on message is received, the
VFD will repeatedly and sequentially cycle its indica-
tion in two second intervals with the odometer/trip
odometer information, the glass ajar warning, and
any other active warnings including: door ajar, gate
ajar, and low washer fluid. If the vehicle is moving,
or once the cluster of a non-moving vehicle receives
an electronic vehicle speed message from the Power-
train Control Module (PCM) indicating a speed
greater than zero, the warning sequence will consist
of three complete display cycles, then revert to only
the odometer/trip odometer display until the glass
ajar switch is cycled. The glass ajar indicator will
also be extinguished when the cluster receives a
glass ajar lamp-off message from the BCM, or if the
ignition switch is turned to the Off position, which-
ever occurs first.
The BCM continually monitors the glass ajar
switch that is integral to the flip-up glass latch to
determine the status of the rear flip-up glass. The
BCM then sends the proper glass ajar lamp-on and
lamp-off messages to the instrument cluster. For fur-
ther diagnosis of the glass ajar indicator or the
instrument cluster circuitry that controls the indica-
tor, (Refer to 8 - ELECTRICAL/INSTRUMENT
CLUSTER - DIAGNOSIS AND TESTING). For
proper diagnosis of the glass ajar switch and circuit,
the BCM, the PCI data bus, or the electronic mes-
KJINSTRUMENT CLUSTER 8J - 21
GATE AJAR INDICATOR (Continued)
On or Start positions, the trip odometer will be reset
to 0.0 kilometers (miles). The VFD must be display-
ing the trip odometer information in order for the
trip odometer information to be reset.
²Warning Display- The odometer or trip odom-
eter information will be toggled at two second inter-
vals with a warning display when certain monitored
conditions are active. If multiple conditions are
active, the VFD will toggle each active warning and
the odometer/trip odometer information at two sec-
ond intervals. Once the vehicle is moving and a vehi-
cle speed input is received by the instrument cluster,
each active warning will be displayed for three two-
second intervals before the VFD reverts to displaying
only the selected odometer or trip odometer informa-
tion. The warnings and monitored conditions include:
²ªdoorº- A door is open or not fully latched.
²ªgateº- The tailgate is open or not fully
latched.
²ªglassº- The rear flip-up glass is open or not
fully latched.
²ªlowashº- The fluid level in the washer reser-
voir is low.
²ªno busº- The instrument cluster can detect no
PCI bus communication. This message is illuminated
solid when there is no PCI bus communication, and
will override the display of all other active warning
displays.
²Communication Error- If the cluster fails to
receive a distance message during normal operation,
it will hold and display the last data received until
the ignition switch is turned to the Off position. If
the cluster does not receive a distance message
within one second after the ignition switch is turned
to the On position, it will display the last distance
message stored in the cluster memory. If the cluster
is unable to display distance information due to an
error internal to the cluster, ªerrorº will be displayed
in the VFD.
²Actuator Test- Each time the cluster is put
through the actuator test, the VFD will step sequen-
tially through a display of ª111111 ºthrough ª999999º,
then display the cluster software version number to
confirm the functionality of the VFD and the cluster
control circuitry.
The PCM continually monitors the vehicle speed
pulse information received from the Body Control
Module (BCM), then sends the proper distance mes-
sages to the instrument cluster. For further diagnosis
of the odometer/trip odometer or the instrument clus-
ter circuitry that controls these functions, (Refer to 8
- ELECTRICAL/INSTRUMENT CLUSTER - DIAG-
NOSIS AND TESTING). For proper diagnosis of the
vehicle speed sensor, the BCM, the PCM, the PCI
data bus, or the electronic message inputs to the
instrument cluster that control the odometer/tripodometer, a DRBIIItscan tool is required. Refer to
the appropriate diagnostic information.
OVERDRIVE OFF INDICATOR
DESCRIPTION
An overdrive off indicator is standard equipment
on all instrument clusters, but is only functional on
vehicles equipped with the optional overdrive auto-
matic transmission. The overdrive off indicator is
located above the fuel gauge and to the left of the
tachometer in the instrument cluster. The overdrive
off indicator consists of a stencil-like cutout of the
text ªO/D OFFº in the opaque layer of the instrument
cluster overlay. The dark outer layer of the overlay
prevents the indicator from being clearly visible
when it is not illuminated. An amber Light Emitting
Diode (LED) behind the cutout in the opaque layer of
the overlay causes the ªO/D OFFº text to appear in
amber through the translucent outer layer of the
overlay when it is illuminated from behind by the
LED, which is soldered onto the instrument cluster
electronic circuit board. When the exterior lighting is
turned On, the illumination intensity of the overdrive
off indicator is dimmable, which is adjusted using the
panel lamps dimmer control ring on the left control
stalk of the multi-function switch. The overdrive off
indicator is serviced as a unit with the instrument
cluster.
OPERATION
The overdrive off indicator gives an indication to
the vehicle operator when the Off position of the
overdrive off switch has been selected, disabling the
electronically controlled overdrive feature of the auto-
matic transmission. This indicator is controlled by a
transistor on the instrument cluster electronic circuit
board based upon the cluster programming and elec-
tronic messages received by the cluster from the
Powertrain Control Module (PCM) over the Program-
mable Communications Interface (PCI) data bus. The
overdrive off indicator Light Emitting Diode (LED) is
completely controlled by the instrument cluster logic
circuit, and that logic will only allow this indicator to
operate when the instrument cluster receives a bat-
tery current input on the fused ignition switch out-
put (run-start) circuit. Therefore, the LED will
always be off when the ignition switch is in any posi-
tion except On or Start. The LED only illuminates
when it is provided a path to ground by the instru-
ment cluster transistor. The instrument cluster will
turn on the overdrive off indicator for the following
reasons:
²Overdrive Off Lamp-On Message- Each time
the cluster receives an overdrive off lamp-on message
8J - 26 INSTRUMENT CLUSTERKJ
ODOMETER (Continued)
The turn signal indicators are connected in parallel
with the other turn signal circuits. This arrangement
allows the turn signal indicators to remain func-
tional, regardless of the condition of the other cir-
cuits in the turn signal and hazard warning systems.
The combination flasher outputs of the hazard switch
to the instrument cluster turn signal indicator inputs
can be diagnosed using conventional diagnostic tools
and methods. (Refer to 8 - ELECTRICAL/LAMPS/
LIGHTING - EXTERIOR/HAZARD SWITCH -
DESCRIPTION) for more information on the combi-
nation flasher and hazard switch operation.
WAIT-TO-START INDICATOR
DESCRIPTION
A wait-to-start indicator is only found in the
instrument clusters of vehicles equipped with an
optional diesel engine. The wait-to-start indicator is
located above the fuel gauge and to the left of the
tachometer in the instrument cluster. The wait-to-
start indicator consists of a stencil-like cutout of the
International Control and Display Symbol icon for
ªDiesel Preheatº in the opaque layer of the instru-
ment cluster overlay. The dark outer layer of the
overlay prevents the indicator from being clearly vis-
ible when it is not illuminated. An amber Light
Emitting Diode (LED) behind the cutout in the
opaque layer of the overlay causes the icon to appear
in amber through the translucent outer layer of the
overlay when it is illuminated from behind by the
LED, which is soldered onto the instrument cluster
electronic circuit board. The wait-to-start indicator is
serviced as a unit with the instrument cluster.
OPERATION
The wait-to-start indicator gives an indication to
the vehicle operator when the diesel engine glow
plugs are energized in their pre-heat operating mode.
This indicator is controlled by a transistor on the
instrument cluster electronic circuit board based
upon the cluster programming and electronic mes-
sages received by the cluster from the Powertrain
Control Module (PCM) over the Programmable Com-
munications Interface (PCI) data bus. The wait-to-
start indicator Light Emitting Diode (LED) is
completely controlled by the instrument cluster logic
circuit, and that logic will only allow this indicator to
operate when the instrument cluster receives a bat-
tery current input on the fused ignition switch out-
put (run-start) circuit. Therefore, the LED will
always be off when the ignition switch is in any posi-
tion except On or Start. The LED only illuminates
when it is provided a path to ground by the instru-
ment cluster transistor. The instrument cluster willturn on the wait-to-start indicator for the following
reasons:
²Wait-To-Start Lamp-On Message- Each time
the cluster receives a wait-to-start lamp-on message
from the PCM indicating the glow plugs are heating
and the driver must wait to start the engine, the
wait-to-start indicator will be illuminated. The indi-
cator remains illuminated until the cluster receives a
wait-to-start lamp-off message, or until the ignition
switch is turned to the Off position, whichever occurs
first.
²Actuator Test- Each time the cluster is put
through the actuator test, the wait-to-start indicator
will be turned on, then off again during the bulb
check portion of the test to confirm the functionality
of the LED and the cluster control circuitry.
The PCM continually monitors the ambient tem-
perature and the glow plug pre-heater circuits to
determine how long the glow plugs must be heated in
the pre-heat operating mode. The PCM then sends
the proper wait-to-start lamp-on and lamp-off mes-
sages to the instrument cluster. For further diagnosis
of the wait-to-start indicator or the instrument clus-
ter circuitry that controls the indicator, (Refer to 8 -
ELECTRICAL/INSTRUMENT CLUSTER - DIAGNO-
SIS AND TESTING). For proper diagnosis of the
glow plug pre-heater control circuits, the PCM, the
PCI data bus, or the electronic message inputs to the
instrument cluster that control the wait-to-start indi-
cator, a DRBIIItscan tool is required. Refer to the
appropriate diagnostic information.
WASHER FLUID INDICATOR
DESCRIPTION
A washer fluid indicator is standard equipment on
all instrument clusters. The washer fluid indicator
consists of the text ªlowashº, which appears in place
of the odometer/trip odometer information in the Vac-
uum-Fluorescent Display (VFD) of the instrument
cluster. The VFD is part of the cluster electronic cir-
cuit board, and is visible through a cutout located
near the lower edge of the speedometer dial face in
the instrument cluster. The dark outer layer of the
overlay prevents the VFD from being clearly visible
when it is not illuminated. The text message
ªlowashº appears in the same blue-green color and at
the same lighting level as the odometer/trip odometer
information through the translucent outer layer of
the overlay when it is illuminated by the instrument
cluster electronic circuit board. The washer fluid
indicator is serviced as a unit with the instrument
cluster.
KJINSTRUMENT CLUSTER 8J - 35
TURN SIGNAL INDICATOR (Continued)
OPERATION
The washer fluid indicator gives an indication to
the vehicle operator that the fluid level in the washer
reservoir is low. This indicator is controlled by the
instrument cluster electronic circuit board based
upon cluster programming and a hard wired input
received by the cluster from the washer fluid level
switch mounted on the washer reservoir. The washer
fluid indicator function of the Vacuum Fluorescent
Display (VFD) is completely controlled by the instru-
ment cluster logic circuit, and that logic will only
allow this indicator to operate when the instrument
cluster receives a battery current input on the fused
ignition switch output (run-start) circuit. Therefore,
the LED will always be off when the ignition switch
is in any position except On or Start. The instrument
cluster will turn on the washer fluid indicator for the
following reasons:
²Washer Fluid Level Switch Input- Each time
the cluster detects ground on the low washer fluid
sense circuit (washer fluid level switch closed =
washer fluid level low) the cluster applies an algo-
rithm to confirm that the input is correct and not the
result of fluid sloshing in the washer reservoir. The
cluster tests the status of the circuit about seven mil-
liseconds after ignition On, and about once every sec-
ond thereafter, then uses an internal counter to
count up or down. When the counter accumulates
thirty ground inputs on the circuit, the washer fluid
indicator will be illuminated. If the vehicle is not
moving when the washer fluid level switch input
counter reaches thirty, the VFD will repeatedly and
sequentially cycle its indication in two second inter-
vals with the odometer/trip odometer information,
the low washer fluid warning, and any other active
warnings including: door ajar, gate ajar, and glass
ajar. If the vehicle is moving, or once the cluster of a
non-moving vehicle receives an electronic vehicle
speed message from the Powertrain Control Module
(PCM) indicating a speed greater than zero, the
warning sequence will consist of three complete dis-
play cycles, then revert to only the odometer/trip
odometer display. Once the washer fluid indicator
warning has completed, the washer fluid indicator is
extinguished and will not repeat until the ignition
switch is cycled.
The instrument cluster continually monitors the
washer fluid level switch in the washer reservoir to
determine the status of the washer fluid level. For
further diagnosis of the washer fluid indicator or the
instrument cluster circuitry that controls the indica-
tor, (Refer to 8 - ELECTRICAL/INSTRUMENT
CLUSTER - DIAGNOSIS AND TESTING). The
washer fluid level switch and circuits can be diag-
nosed using conventional diagnostic tools and meth-
ods. The washer fluid level switch also features a 3.3kilohm diagnostic resistor connected in parallel
between the switch input and output to provide the
cluster with verification that the low washer fluid
sense circuit is not open or shorted. This input can
be monitored using a DRBIIItscan tool. Refer to the
appropriate diagnostic information.
DIAGNOSIS AND TESTING - WASHER FLUID
INDICATOR
The diagnosis found here addresses an inoperative
washer fluid indicator condition. If the problem being
diagnosed is related to indicator accuracy, be certain
to confirm that the problem is with the indicator or
washer fluid level switch input and not with a dam-
aged or empty washer fluid reservoir, or inoperative
instrument cluster indicator control circuitry. Inspect
the washer fluid reservoir for proper fluid level and
signs of damage or distortion that could affect
washer fluid level switch performance and perform
the instrument cluster actuator test before you pro-
ceed with the following diagnosis. If no washer fluid
reservoir or instrument cluster control circuitry prob-
lem is found, the following procedure will help to
locate a short or open in the washer fluid switch
sense circuit. Refer to the appropriate wiring infor-
mation. The wiring information includes wiring dia-
grams, proper wire and connector repair procedures,
details of wire harness routing and retention, connec-
tor pin-out information and location views for the
various wire harness connectors, splices and grounds.
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
INDICATOR DOES NOT ILLUMINATE WITH WASHER
RESERVOIR EMPTY
(1) Disconnect and isolate the battery negative
cable. Disconnect the headlamp and dash wire har-
ness connector for the washer fluid level switch from
the washer fluid level switch connector receptacle.
Check for continuity between the ground circuit cav-
8J - 36 INSTRUMENT CLUSTERKJ
WASHER FLUID INDICATOR (Continued)
ity of the headlamp and dash wire harness connector
for the washer fluid level switch and a good ground.
There should be continuity. If OK, go to Step 2. If not
OK, repair the open ground circuit to ground (G111)
as required.
(2) Remove the instrument cluster from the instru-
ment panel. Check for continuity between the washer
fluid sense circuit cavities of the headlamp and dash
wire harness connector for the washer fluid level
switch and the instrument panel wire harness con-
nector (Connector C2) for the instrument cluster. If
OK, replace the faulty washer fluid level switch. If
not OK, repair the open washer fluid switch sense
circuit between the washer fluid level switch and the
instrument cluster as required.
INDICATOR STAYS ILLUMINATED WITH WASHER
RESERVOIR FULL
(1) Disconnect and isolate the battery negative
cable. Disconnect the headlamp and dash wire har-
ness connector for the washer fluid level switch from
the washer fluid level switch connector receptacle.
Check for continuity between the ground circuit ter-
minal and the washer fluid sense terminal in the
washer fluid level switch connector receptacle. There
should be no continuity. If OK, go to Step 2. If not
OK, replace the faulty washer fluid level switch.
(2) Remove the instrument cluster from the instru-
ment panel. Check for continuity between the washer
fluid sense circuit cavity of the headlamp and dash
wire harness connector for the washer fluid level
switch and a good ground. There should be no conti-
nuity. If not OK, repair the shorted washer fluid
switch sense circuit between the washer fluid level
switch and the instrument cluster as required.
WATER-IN-FUEL INDICATOR
DESCRIPTION
A water-in-fuel indicator is only found in the
instrument clusters of vehicles equipped with an
optional diesel engine. The water-in-fuel indicator is
located above the coolant temperature gauge and to
the right of the speedometer in the instrument clus-
ter. The water-in-fuel indicator consists of a stencil-
like cutout of the International Control and Display
Symbol icon for ªWater In Fuelº in the opaque layer
of the instrument cluster overlay. The dark outer
layer of the overlay prevents the indicator from being
clearly visible when it is not illuminated. A red Light
Emitting Diode (LED) behind the cutout in the
opaque layer of the overlay causes the icon to appear
in red through the translucent outer layer of the
overlay when the indicator is illuminated from
behind by the LED, which is soldered onto the
instrument cluster electronic circuit board. Thewater-in-fuel indicator is serviced as a unit with the
instrument cluster.
OPERATION
The water-in-fuel indicator gives an indication to
the vehicle operator when there is excessive water in
the fuel system. This indicator is controlled by a
transistor on the instrument cluster electronic circuit
board based upon cluster programming and elec-
tronic messages received by the cluster from the
Powertrain Control Module (PCM) over the Program-
mable Communications Interface (PCI) data bus. The
water-in-fuel indicator Light Emitting Diode (LED) is
completely controlled by the instrument cluster logic
circuit, and that logic will only allow this indicator to
operate when the instrument cluster receives a bat-
tery current input on the fused ignition switch out-
put (run-start) circuit. Therefore, the LED will
always be off when the ignition switch is in any posi-
tion except On or Start. The LED only illuminates
when it is provided a path to ground by the instru-
ment cluster transistor. The instrument cluster will
turn on the water-in-fuel indicator for the following
reasons:
²Bulb Test- Each time the ignition switch is
turned to the On position the water-in-fuel indicator
is illuminated for about three seconds as a bulb test.
²Water-In-Fuel Lamp-On Message- Each time
the cluster receives a water-in-fuel lamp-on message
from the PCM indicating there is excessive water in
the diesel fuel system, the water-in-fuel indicator will
be illuminated. The indicator remains illuminated
until the cluster receives a water-in-fuel lamp-off
message, or until the ignition switch is turned to the
Off position, whichever occurs first.
²Actuator Test- Each time the cluster is put
through the actuator test, the water-in-fuel indicator
will be turned on, then off again during the bulb
check portion of the test to confirm the functionality
of the LED and the cluster control circuitry.
The PCM continually monitors the water-in-fuel
sensor to determine whether there is excessive water
in the diesel fuel. The PCM then sends the proper
water-in-fuel lamp-on and lamp-off messages to the
instrument cluster. For further diagnosis of the
water-in-fuel indicator or the instrument cluster cir-
cuitry that controls the indicator, (Refer to 8 - ELEC-
TRICAL/INSTRUMENT CLUSTER - DIAGNOSIS
AND TESTING). For proper diagnosis of the water-
in-fuel-sensor, the PCM, the PCI data bus, or the
electronic message inputs to the instrument cluster
that control the water-in-fuel indicator, a DRBIIIt
scan tool is required. Refer to the appropriate diag-
nostic information.
KJINSTRUMENT CLUSTER 8J - 37
WASHER FLUID INDICATOR (Continued)