
The resistive membrane-type horn switch is
secured with heat stakes to the inside surface of the
driver airbag trim cover, between the trim cover and
the folded airbag cushion. The horn switch ground
pigtail wire has a female spade terminal connector
that receives a path to ground through a male spade
terminal that is integral to the driver airbag housing
stamping and is located near the upper right corner
on the back of the housing (Fig. 15). The horn switch
feed pigtail wire has a white, molded plastic insula-
tor that is secured by an integral retainer to a
mounting hole located near the lower left corner on
the back of the housing, and is connected to the vehi-
cle electrical system through a take out and connec-
tor of the steering wheel wire harness.
The airbag used in this model is a multistage, Next
Generation-type that complies with revised federal
airbag standards to deploy with less force than those
used in some prior models. A 67 centimeter (26.5
inch) diameter, radial deploying fabric cushion with
tethers is used. The airbag inflator is a dual-initiator,
non-azide, pyrotechnic-type unit with four mounting
studs and is secured to the stamped metal airbag
housing using four hex nuts with washers. Two
keyed and color-coded connector receptacles on the
driver airbag inflator connect the two inflator initia-
tors to the vehicle electrical system through two yel-
low-jacketed, two-wire pigtail harnesses of the
clockspring. The driver airbag and horn switch unit
cannot be repaired, and must be replaced if deployed
or in any way damaged.OPERATION
The multistage driver airbag is deployed by electri-
cal signals generated by the Airbag Control Module
(ACM) through the driver airbag squib 1 and squib 2
circuits to the two initiators in the airbag inflator. By
using two initiators, the airbag can be deployed at
multiple levels of force. The force level is controlled
by the ACM to suit the monitored impact conditions
by providing one of three delay intervals between the
electrical signals provided to the two initiators. The
longer the delay between these signals, the less force-
fully the airbag will deploy. When the ACM sends the
proper electrical signals to each initiator, the electri-
cal energy generates enough heat to initiate a small
pyrotechnic charge which, in turn ignites chemical
pellets within the inflator. Once ignited, these chem-
ical pellets burn rapidly and produce a large quantity
of nitrogen gas. The inflator is sealed to the back of
the airbag housing and a diffuser in the inflator
directs all of the nitrogen gas into the airbag cush-
ion, causing the cushion to inflate. As the cushion
inflates, the driver airbag trim cover will split at pre-
determined breakout lines, then fold back out of the
way along with the horn switch unit. Following an
airbag deployment, the airbag cushion quickly
deflates by venting the nitrogen gas towards the
instrument panel through vent holes within the fab-
ric used to construct the back (steering wheel side)
panel of the airbag cushion.
Some of the chemicals used to create the nitrogen
gas may be considered hazardous while in their solid
state before they are burned, but they are securely
sealed within the airbag inflator. Typically, both ini-
tiators are used and all potentially hazardous chem-
icals are burned during an airbag deployment event.
However, it is possible for only one initiator to be
used during a deployment due to an airbag system
fault; therefore, it is necessary to always confirm
that both initiators have been used in order to avoid
the improper disposal of potentially live pyrotechnic
or hazardous materials. (Refer to 8 - ELECTRICAL/
RESTRAINTS - STANDARD PROCEDURE - SER-
VICE AFTER A SUPPLEMENTAL RESTRAINT
DEPLOYMENT). The nitrogen gas that is produced
when the chemicals are burned is harmless. How-
ever, a small amount of residue from the burned
chemicals may cause some temporary discomfort if it
contacts the skin, eyes, or breathing passages. If skin
or eye irritation is noted, rinse the affected area with
plenty of cool, clean water. If breathing passages are
irritated, move to another area where there is plenty
of clean, fresh air to breath. If the irritation is not
alleviated by these actions, contact a physician.
Fig. 15 Driver Airbag Housing
1 - HOUSING
2 - HORN SWITCH GROUND WIRE
3 - HORN SWITCH FEED WIRE
4 - INFLATOR
5 - TRIM COVER
8O - 18 RESTRAINTSKJ
DRIVER AIRBAG (Continued)

PASSENGER AIRBAG
DESCRIPTION
The rearward facing surface of the injection
molded, thermoplastic passenger airbag door is the
most visible part of the passenger airbag (Fig. 23).
The passenger airbag door is located above the glove
box opening in front of the front seat passenger seat-
ing position on the instrument panel. The integral
upper mounting flange is secured with five screws
and the lower mounting flange with six screws to the
instrument panel structural support. The passenger
airbag door includes an integral air conditioning
panel outlet housing and an integral side window
demister outlet. An integral stamped metal bracket
that reinforces the upper airbag door mounting
flange is secured to the back of the door unit with
heat stakes. The upper airbag door fasteners and
mounting flange are concealed beneath the instru-
ment panel top cover, while the lower fasteners and
mounting flange are concealed beneath a bezel on the
instrument panel above the glove box opening.
Located behind the passenger airbag door within
the instrument panel is the passenger airbag unit
(Fig. 24). The passenger airbag unit used in this
model is a multistage, Next Generation-type that
complies with revised federal airbag standards to
deploy with less force than those used in some prior
models. The passenger airbag unit consists of a
molded, glass-filled nylon plastic housing, a molded
plastic inner airbag cushion cover, the airbag cush-
ion, and the airbag inflator. The airbag housing con-tains the airbag inflator, while the inner cover
contains the folded airbag cushion. The inner cover
completely encloses the airbag cushion and is perma-
nently retained to the housing. The passenger airbag
unit is secured by two screws on each side to two
stamped metal mounting brackets that are fastened
with screws to the instrument panel structural sup-
port. The airbag cushion is constructed of a coated
nylon fabric. The airbag inflator is a dual-initiator,
hybrid-type unit that is secured to and sealed within
the airbag housing. A short four-wire pigtail harness
with a keyed, yellow connector insulator connects the
two inflator initiators to the vehicle electrical system
through a dedicated take out and connector of the
instrument panel wire harness.
The passenger airbag cannot be repaired, and must
be replaced if deployed, faulty, or in any way dam-
aged. The passenger airbag door and the passenger
airbag mounting brackets are available for separate
service replacement.
OPERATION
The multistage passenger airbag is deployed by
electrical signals generated by the Airbag Control
Module (ACM) through the passenger airbag squib 1
and squib 2 circuits to the two initiators in the air-
bag inflator. By using two initiators, the airbag can
be deployed at multiple levels of force. The force level
is controlled by the ACM to suit the monitored
impact conditions by providing one of three delay
intervals between the electrical signals provided to
the two initiators. The longer the delay between
these signals, the less forcefully the airbag will
deploy.
Fig. 23 Passenger Airbag Door
1 - PASSENGER AIRBAG DOOR
2 - DEMISTER OUTLET
3 - PANEL OUTLET
4 - BEZEL
5 - GLOVE BOX
Fig. 24 Passenger Airbag Unit
1 - PIGTAIL WIRE CONNECTOR
2 - RETAINER
3 - HOUSING
4 - INNER COVER
KJRESTRAINTS 8O - 27

in parallel with the IC where the two pigtail wire
leads connect to the IC pins.
The seat belt switch cannot be adjusted or repaired
and, if faulty or damaged, the entire seat belt buckle-
half unit must be replaced.
OPERATION
The seat belt switches are designed to provide a
status signal to the seat belt switch sense inputs of
the Airbag Control Module (ACM) indicating whether
the front seat belts are fastened. The ACM uses the
seat belt switch inputs as a factor in determining
what level of force with which it should deploy the
multistage driver and passenger airbags. In addition,
the ACM sends electronic messages to the ElectroMe-
chanical Instrument Cluster (EMIC) to control the
seat belt indicator based upon the status of the
driver side front seat belt switch. A spring-loaded
plastic slide with a small, enclosed permanent mag-
net is integral to the buckle latch mechanism. When
a seat belt tip-half is inserted and latched into the
seat belt buckle, the slide is pushed downward and
into close proximity of the Hall Effect Integrated Cir-
cuit (IC) chip within the buckle, which induces a cur-
rent within the chip. The chip provides this induced
current as an output to the ACM, which monitors the
current to determine the status of the front seat
belts. When the seat belt is unbuckled, the spring-
loaded slide and permanent magnet move upward
and away from the IC, causing the output current
from the seat belt switch to be reduced.
The seat belt switch receives a supply current from
the ACM, and the ACM senses the status of the front
seat belts through its pigtail wire connection to the
seat wire harness. The ACM also monitors the condi-
tion of the seat belt switch circuits through circuit
resistance created by the diagnostic resistor. The
ACM will illuminate the airbag indicator in the
EMIC and store a Diagnostic Trouble Code (DTC) for
any fault that is detected in either seat belt switch
circuit. For proper diagnosis of the seat belt switches,
a DRBIIItscan tool is required. Refer to the appro-
priate diagnostic information.
SEAT BELT TENSIONER
DESCRIPTION
A driver side seat belt tensioner supplements the
driver airbag system for all versions of this model
(Fig. 34). The seat belt tensioner is integral to the
driver side front seat belt and retractor unit, which is
secured to the B-pillar on the left side of the vehicle.
The retractor is concealed beneath the molded plastic
B-pillar trim. The seat belt tensioner consists prima-
rily of a molded plastic tensioner housing, a tubularmetal piston housing, a piston, a short rack gear, a
set of pinion gears, a pyrotechnically activated gas
generator, and a short pigtail wire. All of these com-
ponents are located on one side of the retractor spool
on the outside of the retractor housing. The seat belt
tensioner is controlled by the Airbag Control Module
(ACM) and is connected to the vehicle electrical sys-
tem through a dedicated take out of the body wire
harness by a keyed and latching molded plastic con-
nector insulator to ensure a secure connection.
The seat belt tensioner cannot be repaired and, if
faulty or damaged, the entire driver side front seat
belt and retractor unit must be replaced. The seat
belt tensioner is not intended for reuse and must be
replaced following a deployment. A locked retractor
that will not allow the seat belt webbing to be
retracted or extracted is a sure indication that the
seat belt tensioner has been deployed and requires
replacement. (Refer to 8 - ELECTRICAL/RE-
STRAINTS/FRONT SEAT BELT & RETRACTOR -
REMOVAL).
OPERATION
The seat belt tensioner is deployed by a signal gen-
erated by the Airbag Control Module (ACM) through
the driver seat belt tensioner line 1 and line 2 (or
squib) circuits. When the ACM sends the proper elec-
trical signal to the tensioner, the electrical energy
generates enough heat to initiate a small pyrotechnic
gas generator. The gas generator is installed in one
end of the tubular metal piston housing, which con-
tains a piston and a small rack gear. As the gas
expands, it pushes the piston and the rack gear
Fig. 34 Seat Belt Tensioner
1 - RETRACTOR
2 - TENSIONER HOUSING
3 - PISTON HOUSING
4 - PIGTAIL WIRE
5 - GAS GENERATOR
8O - 36 RESTRAINTSKJ
SEAT BELT SWITCH (Continued)

screws. A two-wire pigtail harness is routed forward
from the airbag inflator through a trough along the
top of the plastic airbag channel on the roof rail and
down the B-pillar, where it is retained by three rout-
ing clips. The pigtail harness is connected to a take
out and connector of the body wire harness on the
B-pillar, which connects to the respective right or left
Side Impact Airbag Control Module (SIACM) on the
sill panel at the base of the B-pillar.
The side curtain airbag unit cannot be adjusted or
repaired and must be replaced if deployed, faulty, or
in any way damaged. Once a side curtain airbag has
been deployed, the complete airbag unit, the head-
liner, the upper A, B, and C-pillar trim, and all other
visibly damaged components must be replaced.
OPERATION
Each side curtain airbag is deployed individually by
an electrical signal generated by the left or right Side
Impact Airbag Control Module (SIACM) to which it is
connected through left or right curtain airbag line 1 and
line 2 (or squib) circuits. The hybrid-type inflatorassembly for each airbag contains a small canister of
highly compressed helium gas. When the SIACM sends
the proper electrical signal to the airbag inflator, the
electrical energy creates enough heat to ignite chemical
pellets within the inflator. Once ignited, these chemicals
burn rapidly and produce the pressure necessary to rup-
ture a containment disk in the helium gas canister. The
inflator and helium gas canister are sealed and con-
nected to a tubular manifold so that all of the released
gas is directed into the folded curtain airbag cushion,
causing the cushion to inflate.
As the airbag cushion inflates it will drop down
from the roof rail between the edge of the headliner
and the side glass/body pillars to form a curtain-like
cushion to protect the vehicle occupants during a side
impact collision. The front tether keeps the front por-
tion of the bag taut, thus ensuring that the bag will
deploy in the proper position. Following the airbag
deployment, the airbag cushion quickly deflates by
venting the helium gas through the loose weave of
the cushion fabric, and the deflated cushion hangs
down loosely from the roof rail.
Fig. 37 Side Curtain Airbag
1 - INFLATOR
2 - MANIFOLD
3 - CHANNEL
4 - TETHER5 - PIGTAIL WIRE RETAINER (3)
6 - PUSH-IN FASTENER (4)
7 - BRACKET (3)
KJRESTRAINTS 8O - 39
SIDE CURTAIN AIRBAG (Continued)

VACUUM RESERVOIR
DESCRIPTION
The vacuum reservoir is a plastic storage tank con-
nected to an engine vacuum source by vacuum lines.
OPERATION
The vacuum reservoir is used to supply the vac-
uum needed to maintain proper speed control opera-
tion when engine vacuum drops, such as in climbing
a grade while driving. A one-way check valve is used
in the vacuum line between the reservoir and the
vacuum source. This check valve is used to trap
engine vacuum in the reservoir. On certain vehicle
applications, this reservoir is shared with the heat-
ing/air-conditioning system. The vacuum reservoir
cannot be repaired and must be replaced if faulty.
DIAGNOSIS AND TESTING - VACUUM
RESERVOIR
(1) Disconnect vacuum hose at speed control servo
and install a vacuum gauge into the disconnected
hose.
(2) Start engine and observe gauge at idle. Vac-
uum gauge should read at least ten inches of mer-
cury.
(3) If vacuum is less than ten inches of mercury,
determine source of leak. Check vacuum line to
engine for leaks. Also check actual engine intake
manifold vacuum. If manifold vacuum does not meet
this requirement, check for poor engine performance
and repair as necessary.
(4) If vacuum line to engine is not leaking, check
for leak at vacuum reservoir. To locate and gain
access to reservoir, refer to Vacuum Reservoir Remov-
al/Installation in this group. Disconnect vacuum line
at reservoir and connect a hand-operated vacuum
pump to reservoir fitting. Apply vacuum. Reservoir
vacuum should not bleed off. If vacuum is being lost,
replace reservoir.
(5) Verify operation of one-way check valve and
check it for leaks.Certain models may be
equipped with 2 check-valves.
(a) Locate one-way check valve. The valve is
located in vacuum line between vacuum reservoir
and engine vacuum source. Disconnect vacuum
hoses (lines) at each end of valve.
(b) Connect a hand-operated vacuum pump to
reservoir end of check valve. Apply vacuum. Vac-
uum should not bleed off. If vacuum is being lost,
replace one-way check valve.
(c) Connect a hand-operated vacuum pump to
vacuum source end of check valve. Apply vacuum.
Vacuum should flow through valve. If vacuum is
not flowing, replace one-way check valve. Seal thefitting at opposite end of valve with a finger and
apply vacuum. If vacuum will not hold, diaphragm
within check valve has ruptured. Replace valve.
REMOVAL
The vacuum reservoir is located behind, and at the
outer end of the instrument panel (Fig. 8). To gain
access for testing or removal, remove glovebox assem-
bly. Also remove fuse box access cover panel at end of
instrument panel. On vehicles equipped with LHD
(Left Hand Drive), this fuse access panel is located at
right end of instrument panel. On vehicles equipped
with RHD (Right Hand Drive), this access panel is
located at left end of instrument panel.
(1) Remove glovebox assembly. Access to reservoir
vacuum line and fitting can now be made.
(2) Remove vacuum line at reservoir.
(3) Remove fuse access cover panel at end of
instrument panel.
(4) Through fuse access opening, remove 2 horizon-
tally mounted screws (Fig. 8).
(5) From bottom of instrument panel, remove 1
vertically mounted screw (Fig. 9).
(6) Remove reservoir from instrument panel.
Fig. 8 VACUUM RESERVOIR LOCATION
1 - VACUUM RESERVOIR
2 - HORIZONTAL MOUNTING SCREWS
3 - OUTBOARD END OF I.P.
KJSPEED CONTROL 8P - 7

WIRING
TABLE OF CONTENTS
page page
WIRING DIAGRAM INFORMATION...... 8Wa-01-1
COMPONENT INDEX................. 8Wa-02-1
POWER DISTRIBUTION.............. 8Wa-10-1
JUNCTION BLOCK................... 8Wa-12-1
GROUND DISTRIBUTION............. 8Wa-15-1
BUS COMMUNICATIONS............. 8Wa-18-1
CHARGING SYSTEM................. 8Wa-20-1
STARTING SYSTEM................. 8Wa-21-1
FUEL/IGNITION SYSTEM............. 8Wa-30-1
TRANSMISSION CONTROL SYSTEM.... 8Wa-31-1
VEHICLE SPEED CONTROL........... 8Wa-33-1
ANTILOCK BRAKES.................. 8Wa-35-1
VEHICLE THEFT SECURITY SYSTEM.... 8Wa-39-1
INSTRUMENT CLUSTER.............. 8Wa-40-1
HORN/CIGAR LIGHTER/POWER OUTLET . 8Wa-41-1
AIR CONDITIONING-HEATER.......... 8Wa-42-1
AIRBAG SYSTEM................... 8Wa-43-1
INTERIOR LIGHTING................. 8Wa-44-1BODY CONTROL MODULE............ 8Wa-45-1
AUDIO SYSTEM.................... 8Wa-47-1
REAR WINDOW DEFOGGER........... 8Wa-48-1
OVERHEAD CONSOLE................ 8Wa-49-1
FRONT LIGHTING................... 8Wa-50-1
REAR LIGHTING.................... 8Wa-51-1
TURN SIGNALS..................... 8Wa-52-1
WIPERS........................... 8Wa-53-1
TRAILER TOW...................... 8Wa-54-1
POWER WINDOWS.................. 8Wa-60-1
POWER DOOR LOCKS............... 8Wa-61-1
POWER MIRRORS.................. 8Wa-62-1
POWER SEAT...................... 8Wa-63-1
POWER SUNROOF.................. 8Wa-64-1
SPLICE INFORMATION............... 8Wa-70-1
CONNECTOR PIN-OUTS.............. 8Wa-80-1
CONNECTOR/GROUND/
SPLICE LOCATION................. 8Wa-91-1 KJWIRING
8Wa-1

INSTALLATION
(1) Insert the removed terminal in the same cavity
on the repair connector.
(2) Repeat steps for each terminal in the connec-
tor, being sure that all wires are inserted into the
proper cavities. For additional connector pin-out
identification, refer to the wiring diagrams.
(3) When the connector is re-assembled, the sec-
ondary terminal lock must be placed in the locked
position to prevent terminal push out.
(4) Replace dress cover (if applicable).
(5) Connect connector to its mating half/compo-
nent.
(6) Connect battery and test all affected systems.
DIODE
REMOVAL
(1) Disconnect the battery.
(2) Locate the diode in the harness, and remove
the protective covering.
(3) Remove the diode from the harness, pay atten-
tion to the current flow direction (Fig. 13).
INSTALLATION
(1) Remove the insulation from the wires in the
harness. Only remove enough insulation to solder in
the new diode.(2) Install the new diode in the harness, making
sure current flow is correct. If necessary, refer to the
appropriate wiring diagram for current flow (Fig. 13).
(3) Solder the connection together using rosin core
type solder only.Do not use acid core solder.
(4) Tape the diode to the harness using electrical
tape. Make sure the diode is completely sealed from
the elements.
(5) Re-connect the battery and test affected sys-
tems.
TERMINAL
REMOVAL
(1) Follow steps for removing terminals described
in the connector removal section.
(2) Cut the wire 6 inches from the back of the con-
nector.
INSTALLATION
(1) Select a wire from the terminal repair kit that
best matches the color and gage of the wire being
repaired.
(2) Cut the repair wire to the proper length and
remove one±half (1/2) inch of insulation.
(3) Splice the repair wire to the wire harness (see
wire splicing procedure).
(4) Insert the repaired wire into the connector.
(5) Install the connector locking wedge, if required,
and reconnect the connector to its mating half/compo-
nent.
(6) Re-tape the wire harness starting at 1±1/2
inches behind the connector and 2 inches past the
repair.
(7) Connect battery and test all affected systems.
WIRE
STANDARD PROCEDURE - WIRE SPLICING
When splicing a wire, it is important that the cor-
rect gage be used as shown in the wiring diagrams.
(1) Remove one-half (1/2) inch of insulation from
each wire that needs to be spliced.
(2) Place a piece of adhesive lined heat shrink tub-
ing on one side of the wire. Make sure the tubing will
be long enough to cover and seal the entire repair
area.
Fig. 13 DIODE IDENTIFICATION
1 - CURRENT FLOW
2 - BAND AROUND DIODE INDICATES CURRENT FLOW
3 - DIODE AS SHOWN IN THE DIAGRAMS
KJ8W-01 WIRING DIAGRAM INFORMATION8Wa-01-13
CONNECTOR (Continued)

(3) Place the strands of wire overlapping each
other inside of the splice clip (Fig. 14).
(4) Using crimping tool, Mopar p/n 05019912AA,
crimp the splice clip and wires together (Fig. 15).
(5) Solder the connection together using rosin core
type solder only (Fig. 16).CAUTION: DO NOT USE ACID CORE SOLDER.
(6) Center the heat shrink tubing over the joint
and heat using a heat gun. Heat the joint until the
tubing is tightly sealed and sealant comes out of both
ends of the tubing (Fig. 17).
Fig. 14 SPLICE BAND
1 - SPLICE BAND
Fig. 15 CRIMPING TOOL
1 - CRIMPING TOOL
Fig. 16 SOLDER SPLICE
1 - SOLDER
2 - SPLICE BAND
3 - SOLDERING IRON
Fig. 17 HEAT SHRINK TUBE
1 - SEALANT
2 - HEAT SHRINK TUBE
8Wa - 01 - 14 8W-01 WIRING DIAGRAM INFORMATIONKJ
WIRE (Continued)