ENGINE MANAGEMENT SYSTEM
23
DESCRIPTION AND OPERATION MODULATOR - EXHAUST GAS REGULATOR (EGR)
The EGR modulator is located on the RH side inner front wing. It regulates the vacuum source to the EGR valve
allowing it to open or close. The ECM utilises the EGR modulator to control the amount of exhaust gas being
recirculated in order to reduce exhaust emissions and combustion noise. Optimum EGR is usually obtained when
the vehicle is operating at light throttle openings, and the vehicle is cruising at approximately 2000 to 3000
rev/min.
Input / Output
The EGR modulator (C0191-1) receives a feed from the main relay (C0063-87) on a brown/orange wire via header
294. The earth path for the modulator (C0191-2) is controlled by the ECM (C0158-3) on a blue wire. The length of
time the ECM supplies an earth is how long the exhaust gases are allowed to recirculate. The ECM decides how
long to supply the earth by looking at engine temperature and engine load.
The EGR modulator can fail in one or more of the following ways:
Solenoid open circuit.
Short circuit to vehicle supply.
Short circuit to earth.
In the event of an EGR modulator failure, the EGR system will become inoperative.
WARNING LAMP - GLOW PLUG
The glow plug warning lamp is located in the instrument pack. It illuminates to alert the driver that the glow plugs
are being heated prior to the engine being started. The length of time that the lamp illuminates and the glow plugs
are operating prior to cranking is the pre-heat period. The length of time of this period is determined by the ECT
sensor signal, controlled by the ECM.
ProCarManuals.com
18ENGINE MANAGEMENT SYSTEM
24
DESCRIPTION AND OPERATION GLOW PLUGS
The 4 glow plugs are located in the engine block on the inlet side, in cylinders 1 to 4. Cylinder 5 has no glow plug.
The glow plugs are a vital part of the engine starting strategy. The purpose of the glow plugs are:
Assist cold engine start.
Reduce exhaust emissions at low engine load/speed.
The main part of the glow plug is a tubular heating element that protrudes into the combustion chamber of the
engine.The heating element contains a spiral filament that is encased in magnesium oxide powder. At the tip of
the tubular heating element is the heater coil. Behind the heater coil and connected in series is a control coil. The
control coil regulates the heater coil to ensure that it does not overheat and cause a possible failure. The glow
plug circuit has its own control relay, located underneath the RH front seat.
Pre-heat is the length of time the glow plugs operate prior to engine cranking. The ECM controls the pre-heat time
of the glow plugs based on battery voltage and coolant temperature information via the glow plug relay.
Post-heat is the length of time the glow plugs operate after the engine starts. The ECM controls the post-heat time
based upon ECT information. If the ECT fails the ECM will operate pre-post heat time strategies with default
values from its memory. In this case, the engine will be difficult to start.
ProCarManuals.com
ENGINE MANAGEMENT SYSTEM
25
DESCRIPTION AND OPERATION Input / Output
The glow plugs receive a feed from the glow plug relay (C0215-3) on a yellow/black then individual black wires.
The ECM provides the earth path for the glow plug relay (C0151-6), working in tandem with the Alarm ECU. The
supply voltage heats the coils to approximately 1000°C (1832°F). The glow plug circuit is wired in parallel, the
body of each glow plug is screwed directly into the engine block which provides each glow plug with an earth path.
The glow plugs can fail in one or more of the following ways:
Heater coil open circuit.
Control coil open circuit.
Poor earth quality.
Short circuit to vehicle supply.
Short circuit to vehicle earth.
Harness fault.
Relay windings open circuit.
Incorrect relay fitted.
In the event of a glow plug failure, any of the following symptoms may be observed:
Difficult starting.
Excessive smoke emissions after engine start.
ProCarManuals.com
18ENGINE MANAGEMENT SYSTEM
26
DESCRIPTION AND OPERATION TURBOCHARGER
1.Exhaust gas from manifold
2.Studs to exhaust manifold
3.Turbocharger cast iron housing
4.Wastegate valve linkage
5.Exhaust gas out to front exhaust pipe6.Compressed air intake
7.Fresh air intake
8.Turbocharger aluminium alloy housing
9.Wastegate valve vacuum port
The Td5 engine utilises a Garrett GT20 turbocharger with an electronically controlled wastegate modulator to
improve engine performance. The turbocharger uses the engines exhaust gas to spin a turbine at very high
speed. This causes inlet air on the other side of the turbine to be drawn in through the turbocharger intake for
compression.The inlet air is carried round by the vanes of the compressor and then thrown out under centrifugal
force from the turbochargers outlet duct. This compression of air enables a greater quantity of air to be delivered
to the inlet manifold via an intercooler. Combustion is improved through better volumetric efficiency. The use of a
turbocharger improves fuel consumption and increases engine torque and power. Exhaust noise is also reduced
due to the smoothing out of exhaust pulsations.
The rear cast iron body of the turbocharger housing connects to a port on the exhaust manifold at the LH side of
the cylinder head by three studs and nuts. The interface between the exhaust manifold and the turbocharger
housing is separated by a metal gasket. The exhaust outlet of the turbocharger is located at the bottom of the
turbocharger cast iron housing. It is connected to the exhaust system front downpipe and is attached by three
studs and nuts. The interface between the turbocharger housing and the exhaust front pipe is separated by a
metal gasket.
The front casing of the turbocharger is constructed from aluminium alloy and is connected to the air inlet duct by a
metal band clip. The compressed air outlet is connected to the intercooler by a metal pipe which has rubber hose
extensions at each end attached by metal band clips.
ProCarManuals.com
ENGINE MANAGEMENT SYSTEM
27
DESCRIPTION AND OPERATION The turbocharger is exposed to extremely high operating temperatures (up to 1000°C, 1832°F) because of the
hot exhaust gases and the high speed revolution of the turbine (up to 15,000 rev/min). In order to resist wear of
the turbine bearings a flow of lubrication oil is supplied from the engine lubrication system to keep the bearings
cool. Oil is supplied from a tapping at the front of the full-flow filter adaptor housing via a metal pipe with banjo
connections. Oil is returned to the sump via a metal pipe which connects to the cylinder block at a port below the
turbocharger assembly.
A heatshield is attached to the LH side of the engine to protect adjacent components from the heat generated at
the turbocharger. The heatshield is attached to the engine by 2 bolts. An additional bolt attaches the heatshield to
the turbocharger casting.
The ECM controls the amount of boost pressure the engine receives by way of the turbocharger. When full boost
is reached a control signal is sent to the wastegate modulator, and a vacuum is applied to the wastegate valve.
The wastegate valve opens, bypassing some of the exhaust gases away from the turbine to be output to the
exhaust system.
The engine should be allowed to idle for 15 seconds following engine start up and before the engine is switched
off to protect the turbocharger by maintaining oil supply to the turbine bearings.
INTERCOOLER
The intercooler is an air-to-air heat exchanger which lowers the intake air temperature to obtain a higher air
density for better combustion efficiency. The intercooler receives compressed air from the turbocharger via a
metal pipe. It cools the intake air via the intercooler matrix and delivers it to the intake manifold by means of a
rubber hose which connects between the intercooler outlet and the intake manifold. The rubber hose is connected
to ports at each end by metal clips.
The intercooler is located at the front of the engine bay, forward of the radiator.
ProCarManuals.com
18ENGINE MANAGEMENT SYSTEM
28
DESCRIPTION AND OPERATION OPERATION
Engine Management
The ECM controls the operation of the engine using stored information within its memory. This guarantees
optimum performance from the engine in terms of torque delivery, fuel consumption and exhaust emissions in all
operating conditions, while still giving optimum driveability.
The ECM will receive information from its sensors under all operating conditions, especially during:
Cold starting.
Hot starting.
Idle.
Wide open throttle.
Acceleration.
Adaptive strategy.
Backup strategy for sensor failures.
The ECM receives information from various sensors to determine the current operating state of the engine. The
ECM then refers this information to stored values in its memory and makes any necessary changes to optimise
air/fuel mixture and fuel injection timing. The ECM controls the air/fuel mixture and fuel injection timing via the
Electronic Unit Injectors (EUI), by the length of time the EUI’s are to inject fuel into the cylinder. This is a rolling
process and is called adaptive strategy. By using this adaptive strategy the ECM is able to control the engine to
give optimum driveability under all operating conditions.
During cold start conditions the ECM uses ECT information to allow more fuel to be injected into the cylinders.
This, combined with the glow plug timing strategy supplied by the ECM, facilitates good cold starting.
During hot start conditions, the ECM uses ECT and FT information to implement the optimum fuelling strategy to
facilitate good hot starting.
During idle and wide open throttle conditions, the ECM uses mapped information within its memory to respond to
input information from the TP sensor to implement the optimum fuelling strategy to facilitate idle and wide open
throttle.
To achieve an adaptive strategy for acceleration, the ECM uses input information from the CKP sensor, the TP
sensor, the ECT sensor, the MAP/IAT sensor, and the FT sensor. This is compared to mapped information within
its memory to implement the optimum fuelling strategy to facilitate acceleration.
Fuel Delivery / Injection Control
The fuel delivery/injection control delivers a precise amount of finely atomised fuel to mix with the air in the
combustion chamber to create a controlled explosion. To precisely control fuel delivery and control fuel injection,
the following input conditions must be met:
CKP information.
Injection timing map information.
FT information.
ECT information.
The ECM monitors the conditions required for optimum combustion of fuel in the cylinder from the various sensors
around the engine and then compares it against stored information. From this calculation, the ECM can adjust the
quantity and timing of the fuel being delivered into the cylinder. The ECM uses CKP information as follows:
To calculate engine speed.
To determine engine crankshaft position.
Engine speed and crankshaft position allows the ECM to determine fuel injection timing.
The ECM also uses ECT and FT information to allow optimum fuel delivery and injection control for all engine
coolant and fuel temperatures.
ProCarManuals.com
ENGINE MANAGEMENT SYSTEM
1
REPAIR ENGINE CONTROL MODULE (ECM)
Service repair no - 18.30.03
Remove
1.Release fixings and remove battery cover.
2.Disconnect battery negative lead.
3.Remove RH seat cushion, release clip and
remove ECM access panel.
4.Remove 3 bolts, release ECM and disconnect 2
multiplugs. Remove ECM.
Refit
5.Position new ECM and connect multiplugs.
6.Fit ECM and tighten bolts.
7.Fit access panel and RH seat cushion.
8.Reconnect battery negative lead.
9.Fit battery cover and secure with fixings.SENSOR - ENGINE COOLANT TEMPERATURE
(ECT)
Service repair no - 18.30.10
Remove
1.Disconnect battery negative lead.
2.Remove spring clip and disconnect ECT sensor
multiplug.
3.Position cloth around ECT sensor to absorb
coolant spillage.
4.Remove ECT sensor.
5.Remove sealing washer and discard.
Refit
6.Clean sealing washer, sensor threads and
sensor location.
7.Coat sensor threads with Loctite 577 and fit new
sealing washer.
8.Fit ECT sensor and tighten to20 Nm (14 lbf.ft).
9.Fit spring clip to multiplug and connect multiplug
to ECT sensor.
10.Top up cooling system.
11.Run engine to normal operating temperature.
Check for leaks around ECT sensor.
12.Reconnect battery negative lead.
ProCarManuals.com
18ENGINE MANAGEMENT SYSTEM
2
REPAIR SENSOR - CRANKSHAFT SPEED AND POSITION
(CKP)
Service repair no - 18.30.12
Remove
1.Disconnect CKP sensor multiplug.
2.Remove bolt, remove CKP sensor from gearbox
housing and discard’O’ring.
3.If fitted, collect spacer.
Refit
4.Clean gearbox housing and CKP sensor.
5.If fitted, refit spacer.
6.Fit new’O’ring, position CKP sensor to gearbox
housing and tighten bolt to10 Nm (7 lbf.ft).
7.Connect sensor multiplug.
ProCarManuals.com