usage on specific models, see appropriate wiring diagram in
L - WIRING DIAGRAMS article. For theory and operation on each
output component, refer to system indicated after component.
Data Link Connector (DLC)
See SELF-DIAGNOSTIC SYSTEM .
EGR Control Solenoid Valve
See EXHAUST GAS RECIRCULATION (EGR) CONTROL under EMISSION
SYSTEMS.
Fuel Injectors
See FUEL CONTROL under FUEL SYSTEM.
Fuel Pressure Control Solenoid Valve (Turbo)
See FUEL DELIVERY under FUEL SYSTEM.
Fuel Pressure Regulator
See FUEL DELIVERY under FUEL SYSTEM.
Idle Air Control (IAC) Motor
See IDLE SPEED under FUEL SYSTEM.
Malfunction Indicator Light
See SELF-DIAGNOSTIC SYSTEM .
Power Transistor(s) & Ignition Coils
See IGNITION SYSTEMS .
Purge Control Solenoid Valve
See EVAPORATIVE CONTROL under EMISSION SYSTEMS.
Wastegate Control Solenoid Valve
See TURBOCHARGED ENGINES under AIR INDUCTION SYSTEM.
FUEL SYSTEM
FUEL DELIVERY
Electric fuel pump, located in gas tank, feeds fuel through
in-tank fuel filter, external fuel filter (located in engine
compartment) and fuel injector rail.
Fuel Pump
Fuel pump consists of a motor-driven impeller. Pump has an
internal check valve to maintain system pressure, and a relief valve
to protect fuel pressure circuit. Pump receives voltage supply from
MFI control relay.
Fuel Pressure Control Solenoid Valve (Turbo)
Valve prevents rough idle due to fuel percolation. On engine
restart, if engine coolant or intake air temperature reaches a preset
value, PCM applies voltage to fuel pressure control solenoid valve for
2 minutes after enginerestart. Valve will open, allowing atmospheric
pressure to be applied to fuel pressure regulator diaphragm. This
allows maximum available fuel pressure at injectors, enriching fuel
mixture and maintaining stable idle at high engine temperatures.
Fuel Pressure Regulator
Located on fuel injector rail, this diaphragm-operated relief
valve adjusts fuel pressure according to engine manifold vacuum.
As engine manifold vacuum increases (closed throttle), fuel
cylinder is on its exhaust stroke when plug fires.
HALL EFFECT IGNITION SYSTEM
This system is equipped with a Hall Effect distributor.
Shutter(s) attached to distributor shaft rotate through distributor
Hall Effect switch, also referred to as a Camshaft Position (CMP)
sensor, which contains a distributor pick-up (a Hall Effect device and
magnet). As shutter blade(s) pass through pick-up, magnetic field is
interrupted and voltage is toggled between high and low. PCM uses this
data along with Crankshaft Position (CKP) sensor data to control
ignition timing and injector pulse width to maintain optimum
driveability.
Power Transistor & Ignition Coil
Power transistor is mounted inside distributor with disc and
optical sensing unit. When ignition is on, ignition coil primary
circuit is energized. As distributor shaft rotates, disc rotates,
triggering optical sensing unit. PCM receives signals from optical
sensing unit. Signals are converted and sent to power transistor,
interrupting primary current flow and inducing secondary voltage.
IGNITION TIMING CONTROL SYSTEM
Ignition timing is controlled by PCM. PCM adjusts timing
based on various conditions such as engine temperature, altitude and
detonation.
EMISSION SYSTEMS
EXHAUST GAS RECIRCULATION (EGR) CONTROL
Federal Emissions (Non-Turbo)
To lower oxides of nitrogen (NOx) exhaust emissions, a non-
computer controlled exhaust gas recirculation system is used. EGR
operation is controlled by throttle body ported vacuum. Vacuum is
routed through vacuum control valve to prevent EGR operation at low
engine temperatures.
Spring pressure holds EGR valve closed during low vacuum
conditions (engine idling or wide open throttle). When vacuum pressure\
increases and overcomes EGR spring pressure, EGR valve is lifted to
allow exhaust gases to flow into intake manifold for combustion.
California Emissions & Turbo
PCM controls EGR operation by activating EGR control solenoid
valve according to engine load. When engine is cold, PCM signals EGR
control solenoid valve to deactivate EGR.
EGR Control Solenoid Valve
Valve denies or allows vacuum supply to EGR valve based on
PCM commands.
EVAPORATIVE CONTROL
Fuel evaporation system prevents fuel vapor from entering
atmosphere. System consists of special fuel tank with vapor separator
tanks (if equipped), vacuum relief filler cap, overfill limiter (2-wa\
y
valve), fuel check valve, thermovalve (if equipped), charcoal
canister, purge control valve, purge control solenoid valve, and
connecting lines and hoses.
Purge Control Solenoid Valve
When engine is off, fuel vapors are vented into charcoal
canister. When engine is warmed to normal operating temperature and
running at speeds greater than idle, PCM energizes purge control
solenoid valve, allowing vacuum to purge valve.
Canister vapors are then drawn through solenoid valve into
intake manifold for burning. Purge control solenoid valve remains
closed during idle and engine warm-up to reduce HC (hydrocarbons) and
CO (carbon monoxide) emissions.
POSITIVE CRANKCASE VENTILATION (PCV) VALVE
PCV valve operates in closed crankcase ventilation system.
Closed crankcase ventilation system consists of PCV valve, oil
separator, breather and ventilation hoses.
PCV valve is a one-way check valve located in valve cover.
When engine is running, manifold vacuum pulls PCV valve open, allowing
crankcase fumes to enter intake manifold. If engine backfires through
intake manifold, PCV valve closes to prevent crankcase combustion.
SELF-DIAGNOSTIC SYSTEM
NOTE: PCM diagnostic memory is retained by direct power supply
from battery. Memory is not erased by turning off ignition,
but it will be erased if battery or PCM is disconnected.
Self-diagnostic system monitors input and output signals
through the Data Link Connector (DLC). Diagnostic Trouble Codes (DTCs\
)
can only be read using a scan tester. For additional information, see
G - TESTS W/CODES article.
Malfunction Indicator Light (MIL)
MIL (CHECK ENGINE light) comes on when ignition is turned on.\
MIL remains on for several seconds after engine has started. If an
abnormal input signal occurs, MIL comes on and code is stored in
memory. If an abnormal input signal returns to normal, PCM turns MIL
off, but code remains stored in memory until it is cleared. If
ignition is turned on again, MIL will not come on until PCM detects
malfunction during system operation.
Fuel Pump Check Connector Taped to wiring harness, on
right side of firewall.
Ignition Timing Adjustment
Connector Taped to wiring harness, on
right side of firewall.
Ignition Coil Top left side of engine.
Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
(1) - Refer to manufacturer's diagnostic trouble code procedure
and require repair or replacement of affected
component(s).
( 2) - Determine cause and correct prior to repair or replacement
of part.
( 3) - Determine source of contamination, such as engine
coolant, fuel, metal particles, or water. Require
repair or replacement.
( 4) - Inoperative includes intermittent operation or out of OEM
specification. Some components may be serviceable; check
for accepted cleaning procedure.
\
\
\
\
\
\
\
CRUISE CONTROL BRAKE SWITCHES
See SWITCHES.
CRUISE CONTROL CABLES
See CRUISE CONTROL LINKAGES AND CABLES .
CRUISE CONTROL CLUTCH SWITCHES
See SWITCHES.
CRUISE CONTROL LINKAGES AND CABLES
CRUISE CONTROL LINKAGE AND CABLE INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Attaching hardware
broken ................. A ... Require repair or replacement
of hardware.
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware not
functioning ............ A ... Require repair or replacement
of hardware.
Bent .................... A .. Require repair or replacement.
Binding ................. A .. Require repair or replacement.
Bracket bent, affecting
performance ............ A .. Require repair or replacement.
Bracket bent, not
affecting performance .. .. ........ No service suggested or
required.
Bracket broken, affecting
performance ............ A ............ Require replacement.
Bracket broken, not
affecting performance .. .. ........ No service suggested or
required.
Bracket corroded,
affecting performance .. A .. Require repair or replacement.
Bracket corroded, not
affecting performance .. 2 .. Suggest repair or replacement.
EMISSION CONTROL VISUAL INSPECTION PROCEDURES
1998 Mitsubishi Montero
1983-98 GENERAL INFORMATION
Emission Control Visual Inspection Procedures
All Models
* PLEASE READ THIS FIRST *
This article is provided for general information only. Not
all information applies to all makes and models. For more complete
information, see appropriate article(s) in the ENGINE PERFORMANCE
Section.
EMISSION CONTROL LABELS
The vehicle manufacturer's emission control label, also known
as the underhood tune-up label or Vehicle's Underhood Emission Control
System (VECI) label, is located in the engine compartment. Information\
regarding year model of vehicle, engine size, number of cylinders,
emission equipment or type, engine tune-up specifications, whether
vehicle was manufactured for sale in California or is a Federal
vehicle, vacuum hose routing schematic, etc., can be found on this
label. See Fig. 1.
In addition to the VECI label, some emission control
inspection and maintenance programs may require an additional label to
be affixed to the vehicle in special circumstances. For example, in
California, a Bureau Of Automotive Repair (BAR) engine label may be
affixed to the left door post. A BAR engine label is only used when
the vehicle has an engine change, approved modification or is a
Specially Constructed (SPCN) or an acceptable Gray market vehicle.
Check your state's emission control inspection and maintenance laws to
determine if a similar label is used.
Fig. 1: Typical Emission Control Label
Courtesy of General Motors Corp.
EMISSION CONTROL VISUAL INSPECTION
* PLEASE READ THIS FIRST *
NOTE: The following emission control visual inspection procedures
should be used as a guide only. When performing a visual
inspection, always follow your state's recommended
inspection procedures.
A visual inspection is made to determine if any required
emission control devices are missing, modified or disconnected.
Missing, modified or disconnected systems must be made fully
operational before a vehicle can be certified.
POSITIVE CRANKCASE VENTILATION (PCV)
PCV controls the flow of crankcase fumes into the intake
manifold while preventing gases and flames from traveling in the
opposite direction. PCV is either an open or closed system. See Fig. 2
.
Ensure PCV system is installed as required. Verify valve,
required hoses, connections, flame arresters, etc., are present,
routed properly and in serviceable condition.
Fig. 2: Typical Open & Closed Type PCV System
THERMOSTATIC AIR CLEANER (TAC)
The TAC supplies warm air to air intake during cold engine
operation. This system is active during cold engine warm-up only.
Under all other operating conditions, air cleaner function is the same
as any non-thermostatic unit.
Ensure required exhaust shroud, hot air duct, vacuum hoses
and air cleaner components are present and installed properly. See
Fig. 3 . Ensure any required thermostatic vacuum switches are in place
and vacuum hoses are installed and in serviceable condition. Also
ensure air cleaner lid is installed right side up. Check for oversized
air filter elements and for additional holes in the air cleaner
housing.
Fig. 3: Typical Thermostatic Air Cleaner System
FUEL EVAPORATIVE SYSTEM (EVAP)
The EVAP system allows for proper fuel system ventilation
while preventing fuel vapors from reaching the atmosphere. This means
that vapors must be caught and stored while the engine is off, which
is when most fuel evaporation occurs. When the engine is started,
these fuel vapors can be removed from storage and burned. In most
systems, storage is provided by an activated charcoal (or carbon)
canister. See Fig. 4. On a few early systems, charcoal canisters are
not used. Instead, fuel vapors are vented into the PCV system and
stored inside the crankcase.
The main components of a fuel evaporation system are a sealed
fuel tank, a liquid-vapor separator and vent lines to a vapor-storing
canister filled with activated charcoal. The filler cap is normally
not vented to the atmosphere, but is fitted with a valve to allow both
pressure and vacuum relief.
Although a few variations do exist between manufacturers,
basic operation is the same for all systems. Check for presence of
vapor storage canister or crankcase storage connections when required.
Ensure required hoses, solenoids, etc., are present and connected
properly. Check for proper type fuel tank cap. Check for any non-OEM
or auxiliary fuel tanks for compliance and the required number of
evaporation canisters.