
70BRAKES
18
REPAIR SENSORS - FRONT
Service repair no - 70.65.32
CAUTION: If a sensor is removed for any
reason, a NEW sensor bush and seal must
be fitted.
Remove
1.Disconnect battery negative lead.
2.Disconnect required sensor electrical
connection, located on inner wing [fender] panel.
3.Remove sensor lead from clips.
4.Clean area surrounding sensor to prevent
ingress of dirt. Using a suitable lever pry sensor
from mounting bush.
5.Release harness cable ties, remove sensor lead
from vehicle.
6.Remove top swivel retaining bolts complete with
brake jump hose and sensor seal. Remove
sensor bush.
Refit
7.Insert new sensor bush and seal.
8.Refit brake jump hose bracket, coat bolts with
Loctite 270.
9.Lightly coat new sensor using EP 90 oil. Push
sensor through bush until it contacts exciter ring.
Sensor will be 'knocked back' to correct position
when vehicle is driven.
10.Secure sensor lead in original position.
11.Reconnect sensor electrical connection.
12.Drive vehicle to ensure ABS warning light is
extinguished.
SENSOR RINGS
The rear sensor ring is assembled to the rear brake
disc to form part of the rear hub assembly.
See
REAR AXLE AND FINAL DRIVE, Repair, Rear Hub
Assembly
The front sensor ring is a toothed ring on the axle
shaft which forms part of the front stub axle assembly.
See FRONT AXLE AND FINAL DRIVE, Overhaul,
Front Stub Axle, Constant Velocity Joint and
Swivel Pin Housing ABS

74WHEELS AND TYRES
6
REPAIR WHEELS
Remove
WARNING: The parking brake acts on
transmission, not rear wheels, and may
not hold vehicle when jacking unless
following procedure is used. If one front wheel
and one rear wheel is raised no vehicle holding or
braking effect is possible. Wheels MUST be
chocked in all circumstances.
Apply parking brake, select 'P' or a gear in main
gearbox and engage low gear in transfer box.
1.Loosen five wheel nuts.
2.Using a suitable trolley jack raise vehicle and
place on axle stands.
See INTRODUCTION,
Information, Jacking
3.Remove wheel nuts and carefully withdraw
wheel over studs.Refit
4.Ensure that retaining studs and nuts are clean.
5.Alloy wheels: Lightly coat wheel mounting spigot
face with a suitable anti-seize compound to
minimise possibility of adhesion between wheel
and spigot face.
6.Refit wheel taking care not to damage stud
threads. (Do not apply oil)
7.Fit wheel nuts and turn by hand for at least three
full threads before using any form of wheel
wrench.
8.Tighten nuts as much as possible using a
suitable wrench.
9.Lower vehicle and finally tighten nuts to correct
torque sequence shown. Alloy wheels and steel
wheels:
130Nm.

75SUPPLEMENTARY RESTRAINT SYSTEM
6
DESCRIPTION AND OPERATION AIRBAG STORAGE
Temporary storage
For temporary storage of the airbag module during
service, observe the following precautions:
Store the airbag module with the pad surface up.
Place the airbag module in designated storage area.
If no designated storage area is available, the module
may be stored in the boot of the vehicle from which it
was removed. Always lock the boot when module is
stored in it and inform workshop supervisor.
WARNING: If the airbag is improperly
stored face down, accidental deployment
could propel the unit with enough force to
cause serious injury.
Store the removed airbag module on a secure flat
surface away from heat, oil, grease, detergent or
water.
CAUTION: Improper handling or storage
can internally damage the airbag module,
making it inoperative. If you suspect the
airbag module has been damaged, install a new
unit.
Overnight storage
Airbag modules are classed as an explosive article
and as such they must be stored in a secure steel
cabinet which has been approved by the local
authority.

AIR CONDITIONING
3
DESCRIPTION AND OPERATION AIR CONDITIONING SYSTEM OPERATION
The air conditioning system provides the means of
supplying cooled and dehumidified, fresh or
recirculated air to the interior of the vehicle. The
cooling effect is obtained by blowing air through the
matrix of an evaporator unit and when required,
mixing that air with heated air by means of the heater
distribution and blend unit, to provide the conditions
required inside the vehicle. The volume of conditioned
air being supplied is controlled by a variable speed
blower.
A sealed system, charged with Refrigerant R134a,
together with a blower unit, blend unit and control
system combine to achieve the cooled air condition.
For air conditioning air distribution system.
See
HEATING AND VENTILATION, Description and
operation, Heating and ventilation unit
The air conditioning system comprises five major
units:
1.An engine-mounted compressor.
2.A condenser mounted in front of the radiator.
3.A receiver/drier unit located in front of the
condenser.
4.Thermostatic expansion valve mounted above
the evaporator.
5.An evaporator unit mounted in front of the heater
matrix.
NOTE: Vehicles fitted with rear air
conditioning have an additional
evaporator/blower motor assembly located
behind the LH rear compartment lower trim panel.
These units are interconnected by hoses and pipes
carrying Refrigerant R134a, the evaporator is linked
into the vehicle ventilation system.
Refrigeration cycle
1. Compressor
The compressor (1), belt driven from the crankshaft
pulley, pressurises and circulates the refrigerant
through the system. Mounted on the compressor, an
electro-mechanical clutch maintains the correct
temperature and pressure by engaging or disengaging
to support the system's requirements. The clutch
action is normally controlled by a thermostat located
at the evaporator (5). The compressor is of the
swashplate type having fixed displacement.Should the temperature at the evaporator (5) fall low
enough for ice to begin to form on the fins, the
thermostat disengages the clutch and also isolates the
cooling fans relays. When the temperature at the
evaporator (5) rises to the control temperature, the
clutch is re-engaged.
Should the system pressure become excessive or
drop sufficiently to cause damage to the compressor
(1) a dual pressure switch (7), located in the high
pressure line, signals the relay unit to disengage the
clutch. The compressor also has an emergency high
pressure relief valve (9) fitted.
The cooling fans are controlled by engine temperature
when the air conditioning is not switched on.
2. Condenser
From the compressor, hot high pressure vaporised
refrigerant (F1) passes to the condenser (2), which is
mounted in front of the engine coolant radiator. Ram
air(A1) passing through the condenser (2),
supplemented by 2 cooling fans (8) mounted in front
of the condenser, cools the refrigerant vapour
sufficiently to form a high pressure slightly subcooled
liquid (F2).
3. Receiver/drier
This liquid then passes to a receiver/drier (3) which
fulfils two functions. It acts as a reservoir and moisture
extractor (11).
A sight glass (10), in the high pressure line, provides a
method of determining the state of the refrigerant
without breaking into the system.
4. Expansion valve
From the receiver/drier (3) the moisture free high
pressure liquid refrigerant (F3) passes through a
thermostatic expansion valve (4). A severe pressure
drop occurs across the valve and as the refrigerant
enters the evaporator space at a temperature of
approximately -5°C it boils and vaporises.

AIR CONDITIONING
1
FAULT DIAGNOSIS AIR CONDITIONING FAULTS
FAULT CAUSE REMEDY
1. Incorrect voltage. 1. Check voltage.
A.2. Open or defective fuse or relay. 2. Check and replace as necessary.
BLOWER3. Loose wire connection including 3. Check system wires; tighten
MOTORground. all connections.
INOPERATIVE4. Switch open or defective. 4. Replace switch.
OR SLOW5. Tight, worn, or burnt motor 5. Replace motor.
RUNNINGbearings.
6. Open rotor windings. 6. Replace motor.
7. Worn motor brushes. 7. Replace motor.
8. Shaft binding-blade misaligned. 8. Check alignment. Repair or replace
as necessary.
9. Defective resistors 9. Rectify or replace.
1. Incorrect voltage. 1. Check voltage.
2. Open or defective fuse or relay. 2. Check and replace as necessary.
B.3. Defective thermostat control or 3. Replace thermostat or
COMPRESSORpressure switch. pressure switch.
CLUTCH4. Shorted or open field coil. 4. Replace coil.
INOPERATIVE5. Bearing seized (clutch will not 5. Replace clutch pulley assembly.
disengage).
6. Refrigeration circuit problem causing
heavy load and excessive drive
torque.6. Check and rectify.
1. Incorrect alignment. 1. Check alignment; repair as
necessary.
2. Loose belt. 2. Adjust to proper tension.
C.3. Compressor not mounted securely. 3. Repair as necessary.
COMPRESSOR4. Bearing in clutch-pulley 4. Remove clutch and replace
CLUTCHassembly not pressed in. clutch pulley assembly.
NOISY5. Low voltage to clutch. 5. Check connections and voltage.
6. Clutch will not spin freely. 6. Refer to B5 above.
7. Oil on clutch face. 7. Check compressor seals for leaks.
8. Slipping clutch. 8. Refer to C5 above. Then check air
gap.
9. Overloaded or locked compressor. 9. Repair or replace compressor.
10. Icing. 10. Check for suction line frosting.
Replace expansion valve if
necessary.
Replace receiver/drier if necessary.
D.1. Motor and/or blades improperly 1. Check mountings, adjust as
CONDENSERmounted. necessary.
VIBRATION2. Foreign matter build-up on 2. Clean blades with a suitable
blades. non-inflammable cleaner.
3. Excessive wear of motor bearings. 3. Replace motor.

82AIR CONDITIONING
4
FAULT DIAGNOSISFAULT CAUSE REMEDY
E.
NOISY
EXPANSION
VALVE
(steady hissing)1. Low refrigerant charge; evident by
bubbles in sight glass.1. Leak test. Repair or replace
components as required.
F.1. Expansion valve not operating 1. Refer to C-2, C-3, D-1
INSUFFICIENTproperly. and E.
COOLING2. Low refrigerant charge-evident 2. Refer to B-1 and E.
by bubbles in sight glass.
3. Compressor not pumping. 3. Refer to B-2 and B-3
G.1. Belt tension. 1. Adjust belt tension.
COMPRESSOR2. Excessive head pressure. 2. Refer to A-1 through
BELTA-4 and C-6.
SLIPPING3. Incorrect alignment of pulleys 3. Repair as needed.
or worn belt not riding properly.
4. Nicked or broken pulley. 4. Replace as needed.
5. Seized compressor. 5. Replace compressor.
1. Loose or missing mounting bolts. 1. Repair as necessary.
2. Broken mounting bracket. 2. Replace bracket.
3. Loose flywheel or clutch 3. Repair as necessary.
retaining bolt.
H.4. Rough idler pulley bearing. 4. Replace bearing.
ENGINE5. Bent, loose, or improperly 5. Repair as necessary.
NOISEmounted engine drive pulley.
AND/OR6. Defective compressor bearing. 6. Replace bearing.
VIBRATION7. Insecure mountings of 7. Repair as necessary.
accessories; generator, power
steering, air filter, etc.
8. Excessive head pressure. 8. Refer to A-1, A-2, A-3
A-4 and C-6.
9. Incorrect compressor oil level. 9. Refer to compressor Oil
Level Check.
HEATER AND AIR CONDITIONING - CIRCUIT
DIAGRAMS
1.For details of heating and air conditioning
electrics
See Electrical Trouble Shooting
Manual.

82AIR CONDITIONING
2
ADJUSTMENT SERVICING PRECAUTIONS
Care must be taken when handling refrigeration
system components. Units must not be lifted by their
hoses, pipes or capillary lines. Hoses and lines must
not be subjected to any twist or stress. Ensure that
hoses are positioned in their correct run before fully
tightening the couplings, and ensure that all clips and
supports are used. Torque wrenches of the correct
type must be used when tightening refrigerant
connections to the stated value. An additional wrench
must be used to hold the union to prevent twisting of
the pipe.
Before connecting any hose or pipe ensure that
refrigerant oil is applied to the seat of the new '0' ring
but not to the threads.
Check the oil trap for the amount of oil lost.
All protective plugs on components must be left in
place until immediately prior to connection.
The receiver/drier contains desiccant which absorbs
moisture. It must be positively sealed at all times.
CAUTION: Whenever the refrigerant
system is opened, the receiver/drier must
be renewed immediately before evacuating
and recharging the system.
Use alcohol and a clean cloth to clean dirty
connections.
Ensure that all new parts fitted are marked for use
withR134a.
Refrigerant oil
Use the approved refrigerant lubricating oil:
Nippon Denso ND-OIL 8
Unipart R134a ND-OIL8
CAUTION: Do not use any other type of
refrigerant oil.
Refrigerant oil easily absorbs water and must not be
stored for long periods. Do not pour unused oil back
into the container.
When renewing system components, add the
following quantities of refrigerant oil:
Condenser 40ml..........................................................
Evaporator 80ml..........................................................
Pipe or hose 20ml........................................................
Receiver/drier 20ml......................................................
Total of refrigerant oil in system = 180ml = 6.3 Fl
ozA new compressor is sealed and pressurised with
Nitrogen gas, slowly release the sealing cap, gas
pressure should be heard to release as the seal is
broken.
NOTE: A new compressor should always
have its sealing caps in place and must
not be removed until immediately prior to
fitting
Fitting a new compressor
A new compressor is supplied with an oil fill (X) of:
180ml
A calculated quantity of oil must be drained from a
new compressor before fitting.
To calculate the quantity of oil to be drained:
1.Remove sealing plugs from the OLD compressor
2.Invert compressor and gravity drain oil into
measuring cylinder. Rotating the compressor
clutch plate will assist complete draining.
3.Note the quantity of oil drained (Y).
4.Calculate the quantity (Q) of oil to be drained
from the NEW compressor using the following
formula:
X - (Y + 20ml) = Q
Rapid refrigerant discharge
When the air conditioning system is involved in
accident damage and the circuit is punctured, the
refrigerant is discharged rapidly. The rapid discharged
of refrigerant will also result in the loss of most of the
oil from the system. The compressor must be
removed and all the remaining oil in the compressor
drained and refilled as follows:
1.Gravity drain all the oil, assist by rotating the
clutch plate (not the pulley).
2.Refill the compressor with the following amount
of new refrigerant oil:
130ml
3.Plug the inlet and outlet ports.

AIR CONDITIONING
3
ADJUSTMENT SERVICING EQUIPMENT
The following equipment is required for full servicing
of the air conditioning system.
Recovery, recycling and charging station
Leak detector
Thermometer +20°C to -60°C
Safety goggles and gloves
REFRIGERANT RECOVERY RECYCLING
RECHARGING
WARNING: The air conditioning system is
charged with a high pressure, potentially
toxic refrigerant. Repairs or servicing must
only be carried out by an operator familiar with
both the vehicle system and the charging and
testing equipment.
All operations must be carried out in a
well-ventilated area away from open flame and
heat sources.
Always wear safety goggles and gloves when
opening refrigerant connections.
WARNING: Wear eye and hand safety
protection. Open connections slowly in
case liquid or pressure is present. Allow to
bleed off slowly.
CAUTION: Overcharging air conditioning
system will cause excessive head
pressure.
An air conditioning portable Refrigerant Recovery
Recycling Recharging Station for use with R134a
refrigerant incorporates all the features necessary to
recover refrigerant R134a from the air conditioning
system, to filter and remove moisture, to evacuate and
recharge with the reclaimed refrigerant. The unit can
also be used for performance testing and air
conditioning system analysis.
The operator must adhere to the equipment
manufacturer's instructions.Recovery and recycling
1. High pressure servicing connection
2. Low pressure servicing connection
1.Connect a Refrigerant Station to the high and
low pressure servicing connections.
2.Operate the refrigerant recovery system
according to the manufacturer's instructions.
3.Measure the amount of oil discharged from the
system. Add an equal amount of new refrigerant
oil to compressor before evacuation sequence.
WARNING: Refrigerant must always be
recycled before reuse, to ensure that the
purity of the refrigerant is high enough for
safe use in the air conditioning system.
Recycling should always be carried out with
equipment which is design certified by
Underwriter Laboratory Inc. for compliance with
SAE-J1991. Other equipment may not recycle
refrigerant to the required level of purity.
A R134a Refrigerant Recovery Recycling
Recharging Station must not be used with any
other type of refrigerant.
Refrigerant R134a from domestic and commercial
sources must not be used in motor vehicle air
conditioning systems.