17B-21V7 MR-413-X44-17B000$050.mif
17B
SIM 32 Injection
Program no.: D3
Vdiag No.: 44, 4C, 50
and 54
RV* / LV*: Cruise control/Speed Limiter1 - Injection computer 16 - Upstream sensor signal
2 - RV* / LV* buttons 17 - Ignition command
3 - Multiplex network 18 - Bleed canister command
4 - Turbocharger 19 - Fuel pump command
5 - Motorised throttle 20 - Downstream sensor signal
6 - Manifold pressure 21 - ESP computer
7 - Injector command 22 - Rev counter computer
8 - Clutch Pedal 23 - ABS computer
9 - Brake pedal 24 - Instrument panel computer
10 - Accelerator pedal 25 - Sequential gearbox computer
11 - Refrigerant fluid pressure 26 - AIRBAG computer
12 - Air conditioning compressor command 27 - Vehicle speed sensor computer
13 - Engine cooling fan assembly command 28 - Air conditioning computer
14 - Flywheel signal 29 - UCH computer
15 - Pinking signal 30 – Turbocharging pressure
PETROL INJECTION
Fault finding – Functional diagram
17B-22V7 MR-413-X44-17B000$060.mif
17B
SIM 32 Injection
Program no.: D3
Vdiag No.: 44, 4C, 50
and 54
SYSTEM OPERATION
Composition
The injection system consists of the:
–accelerator potentiometer,
–TDC sensor,
–air temperature sensor,
–inlet manifold pressure sensor,
–+ turbocharging pressure sensor,
–coolant temperature sensor,
–refrigerant pressure sensor,
–upstream oxygen sensor,
–downstream oxygen sensor,
–cruise control switch (fitted according to the vehicle equipment level),
–cruise control on/off switch (fitted according to the vehicle equipment level),
–brake light switch,
–clutch pedal switch,
–fuel vapour absorber,
–injection computer,
–motorised throttle valve,
–four injectors,
–ignition coil,
–pinking sensor.
Additional components on D4FT 780:
–Turbocharging
–Oil vapour rebreathing circuit de-icing system
–OCS - Customised oil change interval
Computer
SIEMENS type "SIM32" 112-track computer controlling the injection and the ignition. Multipoint injection in
sequential mode.
Connections with the other computers, known as "Intersystem connections":
–ESP (fitted depending on vehicle equipment level).
–Passenger Compartment Control Unit (UCH).
–Gearbox Computer: BVR sequential gearbox (if fitted to the vehicle).
–Instrument panel.
–Airbag.
–ABS (if fitted to the vehicle).
–Rev counter instrument.
–Air conditioning.
PETROL INJECTION
Fault finding – Features
17B-23V7 MR-413-X44-17B000$060.mif
PETROL INJECTION
Fault finding – Features17B
SIM 32 Injection
Program no.: D3
Vdiag No.: 44, 4C, 50
and 54
Engine immobiliser
The SIM 32 computer manages an engine immobiliser program:
–The Verlog 4 type immobiliser function is managed by the UCH computer and the engine management computer.
Before any customer request, the engine management computer and UCH exchange authentication frames via the
multiplex network to determine whether or not to start the engine.
After more than five consecutive failed authentication attempts, the engine management computer goes into
protection (antiscanning) mode and no longer tries to authenticate the UCH. The engine management computer only
exits this mode if the following sequence of operations is respected:
–the ignition is left on for at least 60 seconds,
–the signal is cut off,
–the injection computer self-feed deactivates when it should (the time varies according to engine coolant
temperature.
Following this sequence of operations, a single authentication attempt is authorised. If this fails again, repeat the
sequence of operations described above.
If the engine management computer still fails to unlock, contact the Techline.
Impact detected
If an impact has been stored by the injection computer (ET077 Impact detected), switch off the ignition for
10 seconds, then switch it back on so that the engine can be started. Then clear the faults using command RZ001
Fault memory.
Fuel supply
Fuel is supplied by the fuel pump. It is controlled each time the ignition is switched on, for 1 second, to provide a
certain pressure level in the circuit, and thereby achieve correct engine starting, particularly if the vehicle has not
been used for a long time. When the engine is running, the fuel pump relay is always controlled.
Injection
The injectors are controlled according to several modes. In particular, the engine is started in semi-full group mode
(injectors 1 and 4, then injectors 2 and 3 simultaneously), to ensure a correct start whether or not it is correctly
phased, then it enters sequential mode.
It can sometimes, though rarely, happen that the engine starts when incorrectly phased.
Then, after it has changed to sequential injection mode and as long as the cylinder 1 recognition program has not
taken place, the injectors are offset by two cylinders: injection occurs in the order 4-2-1-3 instead of the expected
order 1-3-4-2.
Injection timing is continuously calculated. It can be zero in the event of cut-off whilst decelerating or overrevving for
example.
17B-26V7 MR-413-X44-17B000$060.mif
PETROL INJECTION
Fault finding – Features17B
SIM 32 Injection
Program no.: D3
Vdiag No.: 44, 4C, 50
and 54
Air conditioning function
The SIM32 computer manages a "Cold Loop" type air conditioning system:
–request for air conditioning by logical link,
–acquisition of pressure in the air conditioning circuit,
–vehicle speed
–air conditioning compressor control,
–fan unit control for the requirements of this function.
The injection computer reconstitutes the power absorbed by the air conditioning compressor and fast idle speed
requests by using the pressure acquired in the air conditioning circuit.
These signals are necessary for adapting the engine management (idling speed regulation, air flow correction, etc.),
for several reasons:
–air conditioning compressor efficiency,
–more engine ruggedness due to torque hesitation caused by the compressor clutching and declutching,
–helping the alternator.
Fan unit 1 and/or 2 requests are reconstituted according to the pressure in the air conditioning circuit and the vehicle
speed. In summary, there are more fan unit requests when the speed is low and the pressure is high.
OCS - Customised Oil Change Interval (does not concern Vdiag 44 and 4C).
This program takes into account the driving style of the user to warn him of the need for an oil service. It counts the
number of revs per minute since the last oil service, corrected by a factor dependent on the oil temperature. When
this number of revs per minute exceeds a certain threshold, the customer is alerted by a message on the instrument
panel informing him that an oil service is required.
After the oil service, the user must reset the oil service interval on the instrument panel.
To find out if the engine concerned uses this programming, consult ET840 Customised Oil Change Interval.
OBD
The OBD programs are as follows:
–catalytic converter fault finding,
–upstream sensor operational fault finding,
–misfire fault finding,
–fuel supply system fault finding.
The misfiring and fuel supply system fault finding is performed continuously. The operational fault finding for the
upstream sensor and the catalytic converter can be only be carried out once per journey, and can never take place
at the same time.
17B-28V7 MR-413-X44-17B000$070.mif
17B
SIM 32 Injection
Program no.: D3
Vdiag No.: 44, 4C, 50
and 54
1. OPERATING SAFETY
Activation of the warning lights
The SIM32 injection system manages the illumination of three warning lights according to the severity of the faults
detected, to inform the customer and to assist with fault finding.
The injection computer manages the activation of the warning lights on the instrument panel. These warning lights
illuminate during the starting phase and in the event of an injection fault or engine overheating.
The warning light activation commands are sent to the instrument panel.
Warning light illumination principle
When the ignition is switched on, the OBD (On Board Diagnostic) warning light is illuminated for approximately
3 seconds and is then extinguished.
If there is an injection fault (severity level 1), the SERVICE warning light is illuminated.
It indicates a reduced level of operation and a limited safety level.
The user must carry out repairs as soon as possible:
–motorised throttle valve,
–accelerator pedal potentiometer,
–inlet manifold pressure sensor,
–computer,
–actuator feed,
–the computer power supply,
–turbocharger pressure sensor (for D4FT 780).
For faults requiring the driver to stop the engine quickly, the severity level 2 warning light is illuminated.
If a fault causing excessive exhaust gas pollution is detected, the orange OBD warning light engine symbol is
illuminated:
–the light flashes if the fault could lead to a risk of destroying catalytic converter (destructive engine misfire). If this
happens, the vehicle must be stopped immediately.
–the light is permanently illuminated if the emission control standards are not met (pollutant engine misfire,
catalytic converter fault, oxygen sensor fault, inconsistency between the oxygen sensors and a fuel vapour
absorber fault).
Mileage travelled with fault
The parameter PR106 Mileage counter fault warning light illuminated displays the mileage covered and
illuminates one of the injection fault warning lights: fault severity level 1 (amber) and 2 (red). The parameter
PR105 Mileage counter OBD fault warning light illuminated displays the mileage covered and illuminates the
OBD warning light.
This counter is reset to 0 using the diagnostic tool via the command RZ001 Fault memory.
PETROL INJECTION
Fault finding – Role of components
17B-30V7 MR-413-X44-17B000$070.mif
PETROL INJECTION
Fault finding – Role of components17B
SIM 32 Injection
Program no.: D3
Vdiag No.: 44, 4C, 50
and 54
Injection computer:
The injection computer manages the entire system.
Its role is to define the engine optimum operating mode and to inform the driver (via the instrument panel, information
display, and buzzer) and to communicate with the other computers.
Fuel vapour recirculation solenoid valve:
The fuel vapour absorber works like a ''sponge'' for petrol vapours and enables gases coming from the tank to be
collected.
Upstream oxygen sensor:
This sensor measures the amount of oxygen in the exhaust gas.
The voltage supplied to the computer by the sensor indicates the amount of oxygen in the exhaust gas - a rich
mixture or a lean mixture - and a program is adopted accordingly.
Downstream oxygen sensor:
This sensor measures the amount of oxygen in the exhaust gas.
The voltage supplied to the computer by the sensor indicates the amount of oxygen in the exhaust gas - a rich
mixture or a lean mixture - and a program is adopted accordingly.
Pinking sensor:
The sensor detects engine knocking and sends its electrical signal to the injection computer.
Oil pressure sensor:
This sensor measures the engine oil pressure.
Turbocharger:
The turbocharger is used to supply the engine with more air.
Turbocharger pressure sensor:
This sensor indicates the pressure at the turbocharger air cooler outlet before the damper valve.
Ignition coil:
This acts both as an energy storage battery and a transformer. It generates high voltage ignition pulses and the
energy required to ignite the mixture.
Motorised throttle valve:
The motorised throttle valve supplies the engine with varying mixtures of fuel and air according to the load required.
This electronic control detects the position of the accelerator using a sensor (potentiometer) to inject the mixture.
17B-39V7 MR-413-X44-17B000$110.mif
17B
SIM 32 Injection
Program no.: D3
Vdiag No.: 44, 4C, 50
and 54
2. PROGRAMMING
Flywheel target programming
(To be carried out when replacing or removing the TDC sensor).
The coolant temperature must be over 35˚C.
–Carry out an initial deceleration with injection cut-off (feet off the brake, accelerator and clutch pedals) between
3500 and 3000 rpm, in 3rd gear for at least 5 seconds for manual gearboxes.
–Decelerate a second time with injection cut-off (feet off the brake, accelerator and clutch pedals) between 2400 and
2000 rpm, in 3rd gear for at least 5 seconds for manual gearboxes.
Check the programming with ET089 Programming flywheel target: Performed.
Programming the throttle end stops
After replacement of the computer or the motorised throttle valve, with the ignition on, wait 30 seconds so that the
computer can program the Upper and Lower limits and then switch off the ignition and wait 30 seconds for the end of
the "Power Latch", so that the computer can store the programmed limits. Check the programming with ET051
Programming throttle stops: Performed.
Programming the alcohol level (only for vehicles running on Ethanol or E85 fuel)
Fuel recognition is carried out by observing the drift of the richness controller.
This can only be performed if the mixture regulation is looped (ET300 Mixture regulation).
Programming procedure:
–start the engine,
–wait for the engine coolant temperature to reach 75˚C and then check using the parameter PR064 "Coolant
temperature",
–run the engine at 1500 rpm for a period of at least 5 minutes,
–check that the programming has been carried out using status ET671 Alcohol level programming and
parameter PR743 Estimated alcohol level in tank,
–the programming is saved when the ignition is switched off. Note:
After replacement of the throttle valve run the command RZ005 Programming to erase any recorded
programming.
Note:
When the injection computer has not recognised the fuel composition, operation is faulty.
PETROL INJECTION
Fault finding – Programming
17B-40V7 MR-413-X44-17B000$120.mif
17B
SIM 32 Injection
Program no.: D3
Vdiag No.: 44, 4C, 50
and 54
Tool faultAssociated
DTCDiagnostic tool title
DF001115Coolant temperature sensor circuit
DF002110Air temperature sensor circuit
DF004235Turbocharger pressure sensor circuit (Vdiag 54 only)
DF011641Sensor supply voltage no. 1
DF012651Sensor feed voltage no. 2
DF026201Cylinder 1 injector control circuit
DF027202Cylinder 2 injector control circuit
DF028203Cylinder 3 injector control circuit
DF029204Cylinder 4 injector control circuit
DF038606Computer
DF046560Battery voltage
DF054243Turbocharger solenoid valve control circuit (Vdiag 54 only)
DF059301Misfiring on cylinder 1
DF060302Misfiring on cylinder 2
DF061303Misfiring on cylinder 3
DF062304Misfiring on cylinder 4
DF079638Motorised throttle valve automatic control
DF08010Camshaft dephaser circuit (Vdiag 4C/50 only)
DF081443Canister bleed solenoid valve circuit
DF082135Upstream oxygen sensor heating circuit
DF083141Downstream oxygen sensor heating circuit
DF084685Actuator relay control circuit
DF085627Fuel pump relay control circuit
PETROL INJECTION
Fault finding – Fault summary table